Abstract:In real world scenarios, due to environmental or hardware constraints, the quadrotor is forced to navigate in pure inertial navigation mode while operating indoors or outdoors. To mitigate inertial drift, end-to-end neural network approaches combined with quadrotor periodic trajectories were suggested. There, the quadrotor distance is regressed and combined with inertial model-based heading estimation, the quadrotor position vector is estimated. To further enhance positioning performance, in this paper we propose a quadrotor neural dead reckoning approach for quadrotors flying on periodic trajectories. In this case, the inertial readings are fed into a simple and efficient network to directly estimate the quadrotor position vector. Our approach was evaluated on two different quadrotors, one operating indoors while the other outdoors. Our approach improves the positioning accuracy of other deep-learning approaches, achieving an average 27% reduction in error outdoors and an average 79% reduction indoors, while requiring only software modifications. With the improved positioning accuracy achieved by our method, the quadrotor can seamlessly perform its tasks.
Abstract:An inertial navigation system (INS) utilizes three orthogonal accelerometers and gyroscopes to determine platform position, velocity, and orientation. There are countless applications for INS, including robotics, autonomous platforms, and the internet of things. Recent research explores the integration of data-driven methods with INS, highlighting significant innovations, improving accuracy and efficiency. Despite the growing interest in this field and the availability of INS datasets, no datasets are available for gyro-free INS (GFINS) and multiple inertial measurement unit (MIMU) architectures. To fill this gap and to stimulate further research in this field, we designed and recorded GFINS and MIMU datasets using 54 inertial sensors grouped in nine inertial measurement units. These sensors can be used to define and evaluate different types of MIMU and GFINS architectures. The inertial sensors were arranged in three different sensor configurations and mounted on a mobile robot and a passenger car. In total, the dataset contains 35 hours of inertial data and corresponding ground truth trajectories. The data and code are freely accessible through our GitHub repository.