Abstract:Despite high-dimensionality of images, the sets of images of 3D objects have long been hypothesized to form low-dimensional manifolds. What is the nature of such manifolds? How do they differ across objects and object classes? Answering these questions can provide key insights in explaining and advancing success of machine learning algorithms in computer vision. This paper investigates dual tasks -- learning and analyzing shapes of image manifolds -- by revisiting a classical problem of manifold learning but from a novel geometrical perspective. It uses geometry-preserving transformations to map the pose image manifolds, sets of images formed by rotating 3D objects, to low-dimensional latent spaces. The pose manifolds of different objects in latent spaces are found to be nonlinear, smooth manifolds. The paper then compares shapes of these manifolds for different objects using Kendall's shape analysis, modulo rigid motions and global scaling, and clusters objects according to these shape metrics. Interestingly, pose manifolds for objects from the same classes are frequently clustered together. The geometries of image manifolds can be exploited to simplify vision and image processing tasks, to predict performances, and to provide insights into learning methods.
Abstract:This paper focuses on the statistical analysis of shapes of data objects called shape graphs, a set of nodes connected by articulated curves with arbitrary shapes. A critical need here is a constrained registration of points (nodes to nodes, edges to edges) across objects. This, in turn, requires optimization over the permutation group, made challenging by differences in nodes (in terms of numbers, locations) and edges (in terms of shapes, placements, and sizes) across objects. This paper tackles this registration problem using a novel neural-network architecture and involves an unsupervised loss function developed using the elastic shape metric for curves. This architecture results in (1) state-of-the-art matching performance and (2) an order of magnitude reduction in the computational cost relative to baseline approaches. We demonstrate the effectiveness of the proposed approach using both simulated data and real-world 2D and 3D shape graphs. Code and data will be made publicly available after review to foster research.
Abstract:This paper investigates the challenge of learning image manifolds, specifically pose manifolds, of 3D objects using limited training data. It proposes a DNN approach to manifold learning and for predicting images of objects for novel, continuous 3D rotations. The approach uses two distinct concepts: (1) Geometric Style-GAN (Geom-SGAN), which maps images to low-dimensional latent representations and maintains the (first-order) manifold geometry. That is, it seeks to preserve the pairwise distances between base points and their tangent spaces, and (2) uses Euler's elastica to smoothly interpolate between directed points (points + tangent directions) in the low-dimensional latent space. When mapped back to the larger image space, the resulting interpolations resemble videos of rotating objects. Extensive experiments establish the superiority of this framework in learning paths on rotation manifolds, both visually and quantitatively, relative to state-of-the-art GANs and VAEs.