Abstract:Reconstructing accurate surfaces with radiance fields has progressed rapidly, yet two promising explicit representations, 3D Gaussian Splatting and sparse-voxel rasterization, exhibit complementary strengths and weaknesses. 3D Gaussian Splatting converges quickly and carries useful geometric priors, but surface fidelity is limited by its point-like parameterization. Sparse-voxel rasterization provides continuous opacity fields and crisp geometry, but its typical uniform dense-grid initialization slows convergence and underutilizes scene structure. We combine the advantages of both by introducing a voxel initialization method that places voxels at plausible locations and with appropriate levels of detail, yielding a strong starting point for per-scene optimization. To further enhance depth consistency without blurring edges, we propose refined depth geometry supervision that converts multi-view cues into direct per-ray depth regularization. Experiments on standard benchmarks demonstrate improvements over prior methods in geometric accuracy, better fine-structure recovery, and more complete surfaces, while maintaining fast convergence.
Abstract:We propose OpenVoxel, a training-free algorithm for grouping and captioning sparse voxels for the open-vocabulary 3D scene understanding tasks. Given the sparse voxel rasterization (SVR) model obtained from multi-view images of a 3D scene, our OpenVoxel is able to produce meaningful groups that describe different objects in the scene. Also, by leveraging powerful Vision Language Models (VLMs) and Multi-modal Large Language Models (MLLMs), our OpenVoxel successfully build an informative scene map by captioning each group, enabling further 3D scene understanding tasks such as open-vocabulary segmentation (OVS) or referring expression segmentation (RES). Unlike previous methods, our method is training-free and does not introduce embeddings from a CLIP/BERT text encoder. Instead, we directly proceed with text-to-text search using MLLMs. Through extensive experiments, our method demonstrates superior performance compared to recent studies, particularly in complex referring expression segmentation (RES) tasks. The code will be open.
Abstract:When performing 3D inpainting using novel-view rendering methods like Neural Radiance Field (NeRF) or 3D Gaussian Splatting (3DGS), how to achieve texture and geometry consistency across camera views has been a challenge. In this paper, we propose a framework of 3D Gaussian Inpainting with Depth-Guided Cross-View Consistency (3DGIC) for cross-view consistent 3D inpainting. Guided by the rendered depth information from each training view, our 3DGIC exploits background pixels visible across different views for updating the inpainting mask, allowing us to refine the 3DGS for inpainting purposes.Through extensive experiments on benchmark datasets, we confirm that our 3DGIC outperforms current state-of-the-art 3D inpainting methods quantitatively and qualitatively.
Abstract:Recent advancements in object-centric text-to-3D generation have shown impressive results. However, generating complex 3D scenes remains an open challenge due to the intricate relations between objects. Moreover, existing methods are largely based on score distillation sampling (SDS), which constrains the ability to manipulate multiobjects with specific interactions. Addressing these critical yet underexplored issues, we present a novel framework of Scene Graph and Layout Guided 3D Scene Generation (GraLa3D). Given a text prompt describing a complex 3D scene, GraLa3D utilizes LLM to model the scene using a scene graph representation with layout bounding box information. GraLa3D uniquely constructs the scene graph with single-object nodes and composite super-nodes. In addition to constraining 3D generation within the desirable layout, a major contribution lies in the modeling of interactions between objects in a super-node, while alleviating appearance leakage across objects within such nodes. Our experiments confirm that GraLa3D overcomes the above limitations and generates complex 3D scenes closely aligned with text prompts.




Abstract:3D visual grounding aims to identify the target object within a 3D point cloud scene referred to by a natural language description. While previous works attempt to exploit the verbo-visual relation with proposed cross-modal transformers, unstructured natural utterances and scattered objects might lead to undesirable performances. In this paper, we introduce DOrA, a novel 3D visual grounding framework with Order-Aware referring. DOrA is designed to leverage Large Language Models (LLMs) to parse language description, suggesting a referential order of anchor objects. Such ordered anchor objects allow DOrA to update visual features and locate the target object during the grounding process. Experimental results on the NR3D and ScanRefer datasets demonstrate our superiority in both low-resource and full-data scenarios. In particular, DOrA surpasses current state-of-the-art frameworks by 9.3% and 7.8% grounding accuracy under 1% data and 10% data settings, respectively.
Abstract:Utilizing multi-view inputs to synthesize novel-view images, Neural Radiance Fields (NeRF) have emerged as a popular research topic in 3D vision. In this work, we introduce a Generalizable Semantic Neural Radiance Field (GSNeRF), which uniquely takes image semantics into the synthesis process so that both novel view images and the associated semantic maps can be produced for unseen scenes. Our GSNeRF is composed of two stages: Semantic Geo-Reasoning and Depth-Guided Visual rendering. The former is able to observe multi-view image inputs to extract semantic and geometry features from a scene. Guided by the resulting image geometry information, the latter performs both image and semantic rendering with improved performances. Our experiments not only confirm that GSNeRF performs favorably against prior works on both novel-view image and semantic segmentation synthesis but the effectiveness of our sampling strategy for visual rendering is further verified.
Abstract:Due to the lack of large-scale text-3D correspondence data, recent text-to-3D generation works mainly rely on utilizing 2D diffusion models for synthesizing 3D data. Since diffusion-based methods typically require significant optimization time for both training and inference, the use of GAN-based models would still be desirable for fast 3D generation. In this work, we propose Triplane Attention for text-guided 3D generation (TPA3D), an end-to-end trainable GAN-based deep learning model for fast text-to-3D generation. With only 3D shape data and their rendered 2D images observed during training, our TPA3D is designed to retrieve detailed visual descriptions for synthesizing the corresponding 3D mesh data. This is achieved by the proposed attention mechanisms on the extracted sentence and word-level text features. In our experiments, we show that TPA3D generates high-quality 3D textured shapes aligned with fine-grained descriptions, while impressive computation efficiency can be observed.