Abstract:NeRF-based methods reconstruct 3D scenes by building a radiance field with implicit or explicit representations. While NeRF-based methods can perform novel view synthesis (NVS) at arbitrary scale, the performance in high-resolution novel view synthesis (HRNVS) with low-resolution (LR) optimization often results in oversmoothing. On the other hand, single-image super-resolution (SR) aims to enhance LR images to HR counterparts but lacks multi-view consistency. To address these challenges, we propose Arbitrary-Scale Super-Resolution NeRF (ASSR-NeRF), a novel framework for super-resolution novel view synthesis (SRNVS). We propose an attention-based VoxelGridSR model to directly perform 3D super-resolution (SR) on the optimized volume. Our model is trained on diverse scenes to ensure generalizability. For unseen scenes trained with LR views, we then can directly apply our VoxelGridSR to further refine the volume and achieve multi-view consistent SR. We demonstrate quantitative and qualitatively that the proposed method achieves significant performance in SRNVS.
Abstract:Utilizing multi-view inputs to synthesize novel-view images, Neural Radiance Fields (NeRF) have emerged as a popular research topic in 3D vision. In this work, we introduce a Generalizable Semantic Neural Radiance Field (GSNeRF), which uniquely takes image semantics into the synthesis process so that both novel view images and the associated semantic maps can be produced for unseen scenes. Our GSNeRF is composed of two stages: Semantic Geo-Reasoning and Depth-Guided Visual rendering. The former is able to observe multi-view image inputs to extract semantic and geometry features from a scene. Guided by the resulting image geometry information, the latter performs both image and semantic rendering with improved performances. Our experiments not only confirm that GSNeRF performs favorably against prior works on both novel-view image and semantic segmentation synthesis but the effectiveness of our sampling strategy for visual rendering is further verified.