Abstract:This paper addresses the advancements in on-road trajectory planning for Autonomous Passenger Vehicles (APV). Trajectory planning aims to produce a globally optimal route for APVs, considering various factors such as vehicle dynamics, constraints, and detected obstacles. Traditional techniques involve a combination of sampling methods followed by optimization algorithms, where the former ensures global awareness and the latter refines for local optima. Notably, the Constrained Iterative Linear Quadratic Regulator (CILQR) optimization algorithm has recently emerged, adapted for APV systems, emphasizing improved safety and comfort. However, existing implementations utilizing the vehicle bicycle kinematic model may not guarantee controllable trajectories. We augment this model by incorporating higher-order terms, including the first and second-order derivatives of curvature and longitudinal jerk. This inclusion facilitates a richer representation in our cost and constraint design. We also address roadway compliance, emphasizing adherence to lane boundaries and directions, which past work often overlooked. Lastly, we adopt a relaxed logarithmic barrier function to address the CILQR's dependency on feasible initial trajectories. The proposed methodology is then validated through simulation and real-world experiment driving scenes in real time.
Abstract:Autonomous driving has long grappled with the need for precise absolute localization, making full autonomy elusive and raising the capital entry barriers for startups. This study delves into the feasibility of local trajectory planning for level-2+ (L2+) semi-autonomous vehicles without the dependence on accurate absolute localization. Instead, we emphasize the estimation of the pose change between consecutive planning frames from motion sensors and integration of relative locations of traffic objects to the local planning problem under the ego car's local coordinate system, therefore eliminating the need for an absolute localization. Without the availability of absolute localization for correction, the measurement errors of speed and yaw rate greatly affect the estimation accuracy of the relative pose change between frames. We proved that the feasibility/stability of the continuous planning problem under such motion sensor errors can be guaranteed at certain defined conditions. This was achieved by formulating it as a Lyapunov-stability analysis problem. Moreover, a simulation pipeline was developed to further validate the proposed local planning method. Simulations were conducted at two traffic scenes with different error settings for speed and yaw rate measurements. The results substantiate the proposed framework's functionality even under relatively inferior sensor errors. We also experiment the stability limits of the planned results under abnormally larger motion sensor errors. The results provide a good match to the previous theoretical analysis. Our findings suggested that precise absolute localization may not be the sole path to achieving reliable trajectory planning, eliminating the necessity for high-accuracy dual-antenna GPS as well as the high-fidelity maps for SLAM localization.
Abstract:Connected vehicle (CV) technology is among the most heavily researched areas in both the academia and industry. The vehicle to vehicle (V2V), vehicle to infrastructure (V2I) and vehicle to pedestrian (V2P) communication capabilities enable critical situational awareness. In some cases, these vehicle communication safety capabilities can overcome the shortcomings of other sensor safety capabilities because of external conditions such as 'No Line of Sight' (NLOS) or very harsh weather conditions. Connected vehicles will help cities and states reduce traffic congestion, improve fuel efficiency and improve the safety of the vehicles and pedestrians. On the road, cars will be able to communicate with one another, automatically transmitting data such as speed, position, and direction, and send alerts to each other if a crash seems imminent. The main focus of this paper is the implementation of Cooperative Collision Avoidance (CCA) for connected vehicles. It leverages the Vehicle to Everything (V2X) communication technology to create a real-time implementable collision avoidance algorithm along with decision-making for a vehicle that communicates with other vehicles. Four distinct collision risk environments are simulated on a cost effective Connected Autonomous Vehicle (CAV) Hardware in the Loop (HIL) simulator to test the overall algorithm in real-time with real electronic control and communication hardware.