Abstract:This paper addresses the advancements in on-road trajectory planning for Autonomous Passenger Vehicles (APV). Trajectory planning aims to produce a globally optimal route for APVs, considering various factors such as vehicle dynamics, constraints, and detected obstacles. Traditional techniques involve a combination of sampling methods followed by optimization algorithms, where the former ensures global awareness and the latter refines for local optima. Notably, the Constrained Iterative Linear Quadratic Regulator (CILQR) optimization algorithm has recently emerged, adapted for APV systems, emphasizing improved safety and comfort. However, existing implementations utilizing the vehicle bicycle kinematic model may not guarantee controllable trajectories. We augment this model by incorporating higher-order terms, including the first and second-order derivatives of curvature and longitudinal jerk. This inclusion facilitates a richer representation in our cost and constraint design. We also address roadway compliance, emphasizing adherence to lane boundaries and directions, which past work often overlooked. Lastly, we adopt a relaxed logarithmic barrier function to address the CILQR's dependency on feasible initial trajectories. The proposed methodology is then validated through simulation and real-world experiment driving scenes in real time.
Abstract:Simple, short, and compact hashtags cover a wide range of information on social networks. Although many works in the field of natural language processing (NLP) have demonstrated the importance of hashtag recommendation, hashtag recommendation for images has barely been studied. In this paper, we introduce the HARRISON dataset, a benchmark on hashtag recommendation for real world images in social networks. The HARRISON dataset is a realistic dataset, composed of 57,383 photos from Instagram and an average of 4.5 associated hashtags for each photo. To evaluate our dataset, we design a baseline framework consisting of visual feature extractor based on convolutional neural network (CNN) and multi-label classifier based on neural network. Based on this framework, two single feature-based models, object-based and scene-based model, and an integrated model of them are evaluated on the HARRISON dataset. Our dataset shows that hashtag recommendation task requires a wide and contextual understanding of the situation conveyed in the image. As far as we know, this work is the first vision-only attempt at hashtag recommendation for real world images in social networks. We expect this benchmark to accelerate the advancement of hashtag recommendation.