Abstract:Self-rationalizing models that also generate a free-text explanation for their predicted labels are an important tool to build trustworthy AI applications. Since generating explanations for annotated labels is a laborious and costly pro cess, recent models rely on large pretrained language models (PLMs) as their backbone and few-shot learning. In this work we explore a self-training approach leveraging both labeled and unlabeled data to further improve few-shot models, under the assumption that neither human written rationales nor annotated task labels are available at scale. We introduce a novel dual-teacher learning framework, which learns two specialized teacher models for task prediction and rationalization using self-training and distills their knowledge into a multi-tasking student model that can jointly generate the task label and rationale. Furthermore, we formulate a new loss function, Masked Label Regularization (MLR) which promotes explanations to be strongly conditioned on predicted labels. Evaluation on three public datasets demonstrate that the proposed methods are effective in modeling task labels and generating faithful rationales.
Abstract:Speech-to-text errors made by automatic speech recognition (ASR) system negatively impact downstream models relying on ASR transcriptions. Language error correction models as a post-processing text editing approach have been recently developed for refining the source sentences. However, efficient models for correcting errors in ASR transcriptions that meet the low latency requirements of industrial grade production systems have not been well studied. In this work, we propose a novel non-autoregressive (NAR) error correction approach to improve the transcription quality by reducing word error rate (WER) and achieve robust performance across different upstream ASR systems. Our approach augments the text encoding of the Transformer model with a phoneme encoder that embeds pronunciation information. The representations from phoneme encoder and text encoder are combined via multi-modal fusion before feeding into the length tagging predictor for predicting target sequence lengths. The joint encoders also provide inputs to the attention mechanism in the NAR decoder. We experiment on 3 open-source ASR systems with varying speech-to-text transcription quality and their erroneous transcriptions on 2 public English corpus datasets. Results show that our PATCorrect (Phoneme Augmented Transformer for ASR error Correction) consistently outperforms state-of-the-art NAR error correction method on English corpus across different upstream ASR systems. For example, PATCorrect achieves 11.62% WER reduction (WERR) averaged on 3 ASR systems compared to 9.46% WERR achieved by other method using text only modality and also achieves an inference latency comparable to other NAR models at tens of millisecond scale, especially on GPU hardware, while still being 4.2 - 6.7x times faster than autoregressive models on Common Voice and LibriSpeech datasets.