Abstract:PHEVA, a Privacy-preserving Human-centric Ethical Video Anomaly detection dataset. By removing pixel information and providing only de-identified human annotations, PHEVA safeguards personally identifiable information. The dataset includes seven indoor/outdoor scenes, featuring one novel, context-specific camera, and offers over 5x the pose-annotated frames compared to the largest previous dataset. This study benchmarks state-of-the-art methods on PHEVA using a comprehensive set of metrics, including the 10% Error Rate (10ER), a metric used for anomaly detection for the first time providing insights relevant to real-world deployment. As the first of its kind, PHEVA bridges the gap between conventional training and real-world deployment by introducing continual learning benchmarks, with models outperforming traditional methods in 82.14% of cases. The dataset is publicly available at https://github.com/TeCSAR-UNCC/PHEVA.git.
Abstract:Video Anomaly Detection (VAD) identifies unusual activities in video streams, a key technology with broad applications ranging from surveillance to healthcare. Tackling VAD in real-life settings poses significant challenges due to the dynamic nature of human actions, environmental variations, and domain shifts. Many research initiatives neglect these complexities, often concentrating on traditional testing methods that fail to account for performance on unseen datasets, creating a gap between theoretical models and their real-world utility. Online learning is a potential strategy to mitigate this issue by allowing models to adapt to new information continuously. This paper assesses how well current VAD algorithms can adjust to real-life conditions through an online learning framework, particularly those based on pose analysis, for their efficiency and privacy advantages. Our proposed framework enables continuous model updates with streaming data from novel environments, thus mirroring actual world challenges and evaluating the models' ability to adapt in real-time while maintaining accuracy. We investigate three state-of-the-art models in this setting, focusing on their adaptability across different domains. Our findings indicate that, even under the most challenging conditions, our online learning approach allows a model to preserve 89.39% of its original effectiveness compared to its offline-trained counterpart in a specific target domain.
Abstract:This article presents an AI-enabled Smart Video Surveillance (SVS) designed to enhance safety in community spaces such as educational and recreational areas, and small businesses. The proposed system innovatively integrates with existing CCTV and wired camera networks, simplifying its adoption across various community cases to leverage recent AI advancements. Our SVS system, focusing on privacy, uses metadata instead of pixel data for activity recognition, aligning with ethical standards. It features cloud-based infrastructure and a mobile app for real-time, privacy-conscious alerts in communities. This article notably pioneers a comprehensive real-world evaluation of the SVS system, covering AI-driven visual processing, statistical analysis, database management, cloud communication, and user notifications. It's also the first to assess an end-to-end anomaly detection system's performance, vital for identifying potential public safety incidents. For our evaluation, we implemented the system in a community college, serving as an ideal model to exemplify the proposed system's capabilities. Our findings in this setting demonstrate the system's robustness, with throughput, latency, and scalability effectively managing 16 CCTV cameras. The system maintained a consistent 16.5 frames per second (FPS) over a 21-hour operation. The average end-to-end latency for detecting behavioral anomalies and alerting users was 26.76 seconds.
Abstract:Smart Video surveillance systems have become important recently for ensuring public safety and security, especially in smart cities. However, applying real-time artificial intelligence technologies combined with low-latency notification and alarming has made deploying these systems quite challenging. This paper presents a case study for designing and deploying smart video surveillance systems based on a real-world testbed at a community college. We primarily focus on a smart camera-based system that can identify suspicious/abnormal activities and alert the stakeholders and residents immediately. The paper highlights and addresses different algorithmic and system design challenges to guarantee real-time high-accuracy video analytics processing in the testbed. It also presents an example of cloud system infrastructure and a mobile application for real-time notification to keep students, faculty/staff, and responsible security personnel in the loop. At the same time, it covers the design decision to maintain communities' privacy and ethical requirements as well as hardware configuration and setups. We evaluate the system's performance using throughput and end-to-end latency. The experiment results show that, on average, our system's end-to-end latency to notify the end users in case of detecting suspicious objects is 5.3, 5.78, and 11.11 seconds when running 1, 4, and 8 cameras, respectively. On the other hand, in case of detecting anomalous behaviors, the system could notify the end users with 7.3, 7.63, and 20.78 seconds average latency. These results demonstrate that the system effectively detects and notifies abnormal behaviors and suspicious objects to the end users within a reasonable period. The system can run eight cameras simultaneously at a 32.41 Frame Per Second (FPS) rate.
Abstract:With the advancement of vision-based artificial intelligence, the proliferation of the Internet of Things connected cameras, and the increasing societal need for rapid and equitable security, the demand for accurate real-time intelligent surveillance has never been higher. This article presents Ancilia, an end-to-end scalable, intelligent video surveillance system for the Artificial Intelligence of Things. Ancilia brings state-of-the-art artificial intelligence to real-world surveillance applications while respecting ethical concerns and performing high-level cognitive tasks in real-time. Ancilia aims to revolutionize the surveillance landscape, to bring more effective, intelligent, and equitable security to the field, resulting in safer and more secure communities without requiring people to compromise their right to privacy.