Abstract:Spatiotemporal data mining (STDM) discovers useful patterns from the dynamic interplay between space and time. Several available surveys capture STDM advances and report a wealth of important progress in this field. However, STDM challenges and problems are not thoroughly discussed and presented in articles of their own. We attempt to fill this gap by providing a comprehensive literature survey on state-of-the-art advances in STDM. We describe the challenging issues and their causes and open gaps of multiple STDM directions and aspects. Specifically, we investigate the challenging issues in regards to spatiotemporal relationships, interdisciplinarity, discretisation, and data characteristics. Moreover, we discuss the limitations in the literature and open research problems related to spatiotemporal data representations, modelling and visualisation, and comprehensiveness of approaches. We explain issues related to STDM tasks of classification, clustering, hotspot detection, association and pattern mining, outlier detection, visualisation, visual analytics, and computer vision tasks. We also highlight STDM issues related to multiple applications including crime and public safety, traffic and transportation, earth and environment monitoring, epidemiology, social media, and Internet of Things.
Abstract:A well-crafted police patrol route design is vital in providing community safety and security in the society. Previous works have largely focused on predicting crime events with historical crime data. The usage of large-scale mobility data collected from Location-Based Social Network, or check-ins, and Point of Interests (POI) data for designing an effective police patrol is largely understudied. Given that there are multiple police officers being on duty in a real-life situation, this makes the problem more complex to solve. In this paper, we formulate the dynamic crime patrol planning problem for multiple police officers using check-ins, crime, incident response data, and POI information. We propose a joint learning and non-random optimisation method for the representation of possible solutions where multiple police officers patrol the high crime risk areas simultaneously first rather than the low crime risk areas. Later, meta-heuristic Genetic Algorithm (GA) and Cuckoo Search (CS) are implemented to find the optimal routes. The performance of the proposed solution is verified and compared with several state-of-art methods using real-world datasets.
Abstract:The location-based social network, FourSquare, helps us to understand a city's mass human mobility. It provides data that characterises the volume of movements across regions and Places of Interests(POIs) to explore the crime dynamics of a city. To fully exploit human movement into crime analysis, we propose the region risk factor which combines monthly aggregated crime and human movement of a region across different time intervals. We then derive a number of features using the region risk factor and conduct extensive experiments with real world data in multiple cities that verify the effectiveness of these features.