Abstract:Semantic segmentation, as a crucial component of complex visual interpretation, plays a fundamental role in autonomous vehicle vision systems. Recent studies have significantly improved the accuracy of semantic segmentation by exploiting complementary information and developing multimodal methods. Despite the gains in accuracy, multimodal semantic segmentation methods suffer from high computational complexity and low inference speed. Therefore, it is a challenging task to implement multimodal methods in driving applications. To address this problem, we propose the Cosine Similarity Fusion Network (CSFNet) as a real-time RGB-X semantic segmentation model. Specifically, we design a Cosine Similarity Attention Fusion Module (CS-AFM) that effectively rectifies and fuses features of two modalities. The CS-AFM module leverages cross-modal similarity to achieve high generalization ability. By enhancing the fusion of cross-modal features at lower levels, CS-AFM paves the way for the use of a single-branch network at higher levels. Therefore, we use dual and single-branch architectures in an encoder, along with an efficient context module and a lightweight decoder for fast and accurate predictions. To verify the effectiveness of CSFNet, we use the Cityscapes, MFNet, and ZJU datasets for the RGB-D/T/P semantic segmentation. According to the results, CSFNet has competitive accuracy with state-of-the-art methods while being state-of-the-art in terms of speed among multimodal semantic segmentation models. It also achieves high efficiency due to its low parameter count and computational complexity. The source code for CSFNet will be available at https://github.com/Danial-Qashqai/CSFNet.
Abstract:Vision transformers have been demonstrated to yield state-of-the-art results on a variety of computer vision tasks using attention-based networks. However, research works in transformers mostly do not investigate robustness/accuracy trade-off, and they still struggle to handle adversarial perturbations. In this paper, we explore the robustness of vision transformers against adversarial perturbations and try to enhance their robustness/accuracy trade-off in white box attack settings. To this end, we propose Locality iN Locality (LNL) transformer model. We prove that the locality introduction to LNL contributes to the robustness performance since it aggregates local information such as lines, edges, shapes, and even objects. In addition, to further improve the robustness performance, we encourage LNL to extract training signal from the moments (a.k.a., mean and standard deviation) and the normalized features. We validate the effectiveness and generality of LNL by achieving state-of-the-art results in terms of accuracy and robustness metrics on German Traffic Sign Recognition Benchmark (GTSRB) and Canadian Institute for Advanced Research (CIFAR-10). More specifically, for traffic sign classification, the proposed LNL yields gains of 1.1% and ~35% in terms of clean and robustness accuracy compared to the state-of-the-art studies.
Abstract:In still image human action recognition, existing studies have mainly leveraged extra bounding box information along with class labels to mitigate the lack of temporal information in still images; however, preparing extra data with manual annotation is time-consuming and also prone to human errors. Moreover, the existing studies have not addressed action recognition with long-tailed distribution. In this paper, we propose a two-phase multi-expert classification method for human action recognition to cope with long-tailed distribution by means of super-class learning and without any extra information. To choose the best configuration for each super-class and characterize inter-class dependency between different action classes, we propose a novel Graph-Based Class Selection (GCS) algorithm. In the proposed approach, a coarse-grained phase selects the most relevant fine-grained experts. Then, the fine-grained experts encode the intricate details within each super-class so that the inter-class variation increases. Extensive experimental evaluations are conducted on various public human action recognition datasets, including Stanford40, Pascal VOC 2012 Action, BU101+, and IHAR datasets. The experimental results demonstrate that the proposed method yields promising improvements. To be more specific, in IHAR, Sanford40, Pascal VOC 2012 Action, and BU101+ benchmarks, the proposed approach outperforms the state-of-the-art studies by 8.92%, 0.41%, 0.66%, and 2.11 % with much less computational cost and without any auxiliary annotation information. Besides, it is proven that in addressing action recognition with long-tailed distribution, the proposed method outperforms its counterparts by a significant margin.
Abstract:Online learning policy makes visual trackers more robust against different distortions through learning domain-specific cues. However, the trackers adopting this policy fail to fully leverage the discriminative context of the background areas. Moreover, owing to the lack of sufficient data at each time step, the online learning approach can also make the trackers prone to over-fitting to the background regions. In this paper, we propose a domain adaptation approach to strengthen the contributions of the semantic background context. The domain adaptation approach is backboned with only an off-the-shelf deep model. The strength of the proposed approach comes from its discriminative ability to handle severe occlusion and background clutter challenges. We further introduce a cost-sensitive loss alleviating the dominance of non-semantic background candidates over the semantic candidates, thereby dealing with the data imbalance issue. Experimental results demonstrate that our tracker achieves competitive results at real-time speed compared to the state-of-the-art trackers.