Abstract:Learning to sample from intractable distributions over discrete sets without relying on corresponding training data is a central problem in a wide range of fields, including Combinatorial Optimization. Currently, popular deep learning-based approaches rely primarily on generative models that yield exact sample likelihoods. This work introduces a method that lifts this restriction and opens the possibility to employ highly expressive latent variable models like diffusion models. Our approach is conceptually based on a loss that upper bounds the reverse Kullback-Leibler divergence and evades the requirement of exact sample likelihoods. We experimentally validate our approach in data-free Combinatorial Optimization and demonstrate that our method achieves a new state-of-the-art on a wide range of benchmark problems.
Abstract:We introduce the concept of geometry-informed neural networks (GINNs), which encompass (i) learning under geometric constraints, (ii) neural fields as a suitable representation, and (iii) generating diverse solutions to under-determined systems often encountered in geometric tasks. Notably, the GINN formulation does not require training data, and as such can be considered generative modeling driven purely by constraints. We add an explicit diversity loss to mitigate mode collapse. We consider several constraints, in particular, the connectedness of components which we convert to a differentiable loss through Morse theory. Experimentally, we demonstrate the efficacy of the GINN learning paradigm across a range of two and three-dimensional scenarios with increasing levels of complexity.
Abstract:Several recent unsupervised learning methods use probabilistic approaches to solve combinatorial optimization (CO) problems based on the assumption of statistically independent solution variables. We demonstrate that this assumption imposes performance limitations in particular on difficult problem instances. Our results corroborate that an autoregressive approach which captures statistical dependencies among solution variables yields superior performance on many popular CO problems. We introduce subgraph tokenization in which the configuration of a set of solution variables is represented by a single token. This tokenization technique alleviates the drawback of the long sequential sampling procedure which is inherent to autoregressive methods without sacrificing expressivity. Importantly, we theoretically motivate an annealed entropy regularization and show empirically that it is essential for efficient and stable learning.
Abstract:The brain cortex, which processes visual, auditory and sensory data in the brain, is known to have many recurrent connections within its layers and from higher to lower layers. But, in the case of machine learning with neural networks, it is generally assumed that strict feed-forward architectures are suitable for static input data, such as images, whereas recurrent networks are required mainly for the processing of sequential input, such as language. However, it is not clear whether also processing of static input data benefits from recurrent connectivity. In this work, we introduce and test a novel implementation of recurrent neural networks with lateral and feed-back connections into deep learning. This departure from the strict feed-forward structure prevents the use of the standard error backpropagation algorithm for training the networks. Therefore we provide an algorithm which implements the backpropagation algorithm on a implicit implementation of recurrent networks, which is different from state-of-the-art implementations of recurrent neural networks. Our method, in contrast to current recurrent neural networks, eliminates the use of long chains of derivatives due to many iterative update steps, which makes learning computationally less costly. It turns out that the presence of recurrent intra-layer connections within a one-layer implicit recurrent network enhances the performance of neural networks considerably: A single-layer implicit recurrent network is able to solve the XOR problem, while a feed-forward network with monotonically increasing activation function fails at this task. Finally, we demonstrate that a two-layer implicit recurrent architecture leads to a better performance in a regression task of physical parameters from the measured trajectory of a damped pendulum.