Abstract:Spatial reasoning tasks in multi-agent environments such as event prediction, agent type identification, or missing data imputation are important for multiple applications (e.g., autonomous surveillance over sensor networks and subtasks for reinforcement learning (RL)). StarCraft II game replays encode intelligent (and adversarial) multi-agent behavior and could provide a testbed for these tasks; however, extracting simple and standardized representations for prototyping these tasks is laborious and hinders reproducibility. In contrast, MNIST and CIFAR10, despite their extreme simplicity, have enabled rapid prototyping and reproducibility of ML methods. Following the simplicity of these datasets, we construct a benchmark spatial reasoning dataset based on StarCraft II replays that exhibit complex multi-agent behaviors, while still being as easy to use as MNIST and CIFAR10. Specifically, we carefully summarize a window of 255 consecutive game states to create 3.6 million summary images from 60,000 replays, including all relevant metadata such as game outcome and player races. We develop three formats of decreasing complexity: Hyperspectral images that include one channel for every unit type (similar to multispectral geospatial images), RGB images that mimic CIFAR10, and grayscale images that mimic MNIST. We show how this dataset can be used for prototyping spatial reasoning methods. All datasets, code for extraction, and code for dataset loading can be found at https://starcraftdata.davidinouye.com
Abstract:Learning latent causal models from data has many important applications such as robustness, model extrapolation, and counterfactuals. Most prior theoretic work has focused on full causal discovery (i.e., recovering the true latent variables) but requires strong assumptions such as linearity or fails to have any analysis of the equivalence class of solutions (e.g., IRM). Instead of full causal discovery, we focus on a specific type of causal query called the domain counterfactual, which hypothesizes what a sample would have looked like if it had been generated in a different domain (or environment). Concretely, we assume domain-specific invertible latent structural causal models and a shared invertible observation function, both of which are less restrictive assumptions than prior theoretic works. Under these assumptions, we define domain counterfactually equivalent models and prove that any model can be transformed into an equivalent model via two invertible functions. This constructive property provides a tight characterization of the domain counterfactual equivalence classes. Building upon this result, we prove that every equivalence class contains a model where all intervened variables are at the end when topologically sorted by the causal DAG, i.e., all non-intervened variables have non-intervened ancestors. This surprising result suggests that an algorithm that only allows intervention in the last $k$ latent variables may improve model estimation for counterfactuals. In experiments, we enforce the sparse intervention hypothesis via this theoretic result by constraining that the latent SCMs can only differ in the last few causal mechanisms and demonstrate the feasibility of this algorithm in simulated and image-based experiments.
Abstract:A distribution shift can have fundamental consequences such as signaling a change in the operating environment or significantly reducing the accuracy of downstream models. Thus, understanding distribution shifts is critical for examining and hopefully mitigating the effect of such a shift. Most prior work has focused on merely detecting if a shift has occurred and assumes any detected shift can be understood and handled appropriately by a human operator. We hope to aid in these manual mitigation tasks by explaining the distribution shift using interpretable transportation maps from the original distribution to the shifted one. We derive our interpretable mappings from a relaxation of the optimal transport problem, where the candidate mappings are restricted to a set of interpretable mappings. We then use quintessential examples of distribution shift in simulated and real-world cases to showcase how our explanatory mappings provide a better balance between detail and interpretability than the de facto standard mean shift explanation by both visual inspection and our PercentExplained metric.
Abstract:While previous distribution shift detection approaches can identify if a shift has occurred, these approaches cannot localize which specific features have caused a distribution shift -- a critical step in diagnosing or fixing any underlying issue. For example, in military sensor networks, users will want to detect when one or more of the sensors has been compromised, and critically, they will want to know which specific sensors might be compromised. Thus, we first define a formalization of this problem as multiple conditional distribution hypothesis tests and propose both non-parametric and parametric statistical tests. For both efficiency and flexibility, we then propose to use a test statistic based on the density model score function (i.e. gradient with respect to the input) -- which can easily compute test statistics for all dimensions in a single forward and backward pass. Any density model could be used for computing the necessary statistics including deep density models such as normalizing flows or autoregressive models. We additionally develop methods for identifying when and where a shift occurs in multivariate time-series data and show results for multiple scenarios using realistic attack models on both simulated and real world data.