Abstract:In recent years, knowledge graphs have been integrated into recommender systems as item-side auxiliary information, enhancing recommendation accuracy. However, constructing and integrating structural user-side knowledge remains a significant challenge due to the improper granularity and inherent scarcity of user-side features. Recent advancements in Large Language Models (LLMs) offer the potential to bridge this gap by leveraging their human behavior understanding and extensive real-world knowledge. Nevertheless, integrating LLM-generated information into recommender systems presents challenges, including the risk of noisy information and the need for additional knowledge transfer. In this paper, we propose an LLM-based user-side knowledge inference method alongside a carefully designed recommendation framework to address these challenges. Our approach employs LLMs to infer user interests based on historical behaviors, integrating this user-side information with item-side and collaborative data to construct a hybrid structure: the Collaborative Interest Knowledge Graph (CIKG). Furthermore, we propose a CIKG-based recommendation framework that includes a user interest reconstruction module and a cross-domain contrastive learning module to mitigate potential noise and facilitate knowledge transfer. We conduct extensive experiments on three real-world datasets to validate the effectiveness of our method. Our approach achieves state-of-the-art performance compared to competitive baselines, particularly for users with sparse interactions.
Abstract:Unlike typical video action recognition, Dynamic Facial Expression Recognition (DFER) does not involve distinct moving targets but relies on localized changes in facial muscles. Addressing this distinctive attribute, we propose a Multi-Scale Spatio-temporal CNN-Transformer network (MSSTNet). Our approach takes spatial features of different scales extracted by CNN and feeds them into a Multi-scale Embedding Layer (MELayer). The MELayer extracts multi-scale spatial information and encodes these features before sending them into a Temporal Transformer (T-Former). The T-Former simultaneously extracts temporal information while continually integrating multi-scale spatial information. This process culminates in the generation of multi-scale spatio-temporal features that are utilized for the final classification. Our method achieves state-of-the-art results on two in-the-wild datasets. Furthermore, a series of ablation experiments and visualizations provide further validation of our approach's proficiency in leveraging spatio-temporal information within DFER.