Grin
Abstract:Online Mental Health Communities (OMHCs), such as Reddit, have witnessed a surge in popularity as go-to platforms for seeking information and support in managing mental health needs. Platforms like Reddit offer immediate interactions with peers, granting users a vital space for seeking mental health assistance. However, the largely unregulated nature of these platforms introduces intricate challenges for both users and society at large. This study explores the factors that drive peer engagement within counseling threads, aiming to enhance our understanding of this critical phenomenon. We introduce BeCOPE, a novel behavior encoded Peer counseling dataset comprising over 10,118 posts and 58,279 comments sourced from 21 mental health-specific subreddits. The dataset is annotated using three major fine-grained behavior labels: (a) intent, (b) criticism, and (c) readability, along with the emotion labels. Our analysis indicates the prominence of ``self-criticism'' as the most prevalent form of criticism expressed by help-seekers, accounting for a significant 43% of interactions. Intriguingly, we observe that individuals who explicitly express their need for help are 18.01% more likely to receive assistance compared to those who present ``surveys'' or engage in ``rants.'' Furthermore, we highlight the pivotal role of well-articulated problem descriptions, showing that superior readability effectively doubles the likelihood of receiving the sought-after support. Our study emphasizes the essential role of OMHCs in offering personalized guidance and unveils behavior-driven engagement patterns.
Abstract:The psychotherapy intervention technique is a multifaceted conversation between a therapist and a patient. Unlike general clinical discussions, psychotherapy's core components (viz. symptoms) are hard to distinguish, thus becoming a complex problem to summarize later. A structured counseling conversation may contain discussions about symptoms, history of mental health issues, or the discovery of the patient's behavior. It may also contain discussion filler words irrelevant to a clinical summary. We refer to these elements of structured psychotherapy as counseling components. In this paper, the aim is mental health counseling summarization to build upon domain knowledge and to help clinicians quickly glean meaning. We create a new dataset after annotating 12.9K utterances of counseling components and reference summaries for each dialogue. Further, we propose ConSum, a novel counseling-component guided summarization model. ConSum undergoes three independent modules. First, to assess the presence of depressive symptoms, it filters utterances utilizing the Patient Health Questionnaire (PHQ-9), while the second and third modules aim to classify counseling components. At last, we propose a problem-specific Mental Health Information Capture (MHIC) evaluation metric for counseling summaries. Our comparative study shows that we improve on performance and generate cohesive, semantic, and coherent summaries. We comprehensively analyze the generated summaries to investigate the capturing of psychotherapy elements. Human and clinical evaluations on the summary show that ConSum generates quality summary. Further, mental health experts validate the clinical acceptability of the ConSum. Lastly, we discuss the uniqueness in mental health counseling summarization in the real world and show evidences of its deployment on an online application with the support of mpathic.ai