Abstract:Everyday devices like light bulbs and kitchen appliances are now embedded with so many features and automated behaviors that they have become complicated to actually use. While such "smart" capabilities can better support users' goals, the task of learning the "ins and outs" of different devices is daunting. Voice assistants aim to solve this problem by providing a natural language interface to devices, yet such assistants cannot understand loosely-constrained commands, they lack the ability to reason about and explain devices' behaviors to users, and they rely on connectivity to intrusive cloud infrastructure. Toward addressing these issues, we propose thoughtful things: devices that leverage lightweight, on-device language models to take actions and explain their behaviors in response to unconstrained user commands. We propose an end-to-end framework that leverages formal modeling, automated training data synthesis, and generative language models to create devices that are both capable and thoughtful in the presence of unconstrained user goals and inquiries. Our framework requires no labeled data and can be deployed on-device, with no cloud dependency. We implement two thoughtful things (a lamp and a thermostat) and deploy them on real hardware, evaluating their practical performance.
Abstract:Every smart home user interaction has an explicit or implicit goal. Existing home assistants easily achieve explicit goals, e.g., "turn on the light". In more natural communication, however, humans tend to describe implicit goals. We can, for example, ask someone to "make it cozy" rather than describe the specific steps involved. Current systems struggle with this ambiguity since it requires them to relate vague intent to specific devices. We approach this problem of flexibly achieving user goals from the perspective of general-purpose large language models (LLMs) trained on gigantic corpora and adapted to downstream tasks with remarkable flexibility. We explore the use of LLMs for controlling devices and creating automation routines to meet the implicit goals of user commands. In a user-focused study, we find that LLMs can reason creatively to achieve challenging goals, while also revealing gaps that diminish their usefulness. We address these gaps with Sasha: a system for creative, goal-oriented reasoning in smart homes. Sasha responds to commands like "make it cozy" or "help me sleep better" by executing plans to achieve user goals, e.g., setting a mood with available devices, or devising automation routines. We demonstrate Sasha in a real smart home.
Abstract:With the rising emergence of decentralized and opportunistic approaches to machine learning, end devices are increasingly tasked with training deep learning models on-devices using crowd-sourced data that they collect themselves. These approaches are desirable from a resource consumption perspective and also from a privacy preservation perspective. When the devices benefit directly from the trained models, the incentives are implicit - contributing devices' resources are incentivized by the availability of the higher-accuracy model that results from collaboration. However, explicit incentive mechanisms must be provided when end-user devices are asked to contribute their resources (e.g., computation, communication, and data) to a task performed primarily for the benefit of others, e.g., training a model for a task that a neighbor device needs but the device owner is uninterested in. In this project, we propose a novel blockchain-based incentive mechanism for completely decentralized and opportunistic learning architectures. We leverage a smart contract not only for providing explicit incentives to end devices to participate in decentralized learning but also to create a fully decentralized mechanism to inspect and reflect on the behavior of the learning architecture.
Abstract:The right response to someone who says "get ready for a party" is deeply influenced by meaning and context. For a smart home assistant (e.g., Google Home), the ideal response might be to survey the available devices in the home and change their state to create a festive atmosphere. Current practical systems cannot service such requests since they require the ability to (1) infer meaning behind an abstract statement and (2) map that inference to a concrete course of action appropriate for the context (e.g., changing the settings of specific devices). In this paper, we leverage the observation that recent task-agnostic large language models (LLMs) like GPT-3 embody a vast amount of cross-domain, sometimes unpredictable contextual knowledge that existing rule-based home assistant systems lack, which can make them powerful tools for inferring user intent and generating appropriate context-dependent responses during smart home interactions. We first explore the feasibility of a system that places an LLM at the center of command inference and action planning, showing that LLMs have the capacity to infer intent behind vague, context-dependent commands like "get ready for a party" and respond with concrete, machine-parseable instructions that can be used to control smart devices. We furthermore demonstrate a proof-of-concept implementation that puts an LLM in control of real devices, showing its ability to infer intent and change device state appropriately with no fine-tuning or task-specific training. Our work hints at the promise of LLM-driven systems for context-awareness in smart environments, motivating future research in this area.
Abstract:Pervasive computing applications commonly involve user's personal smartphones collecting data to influence application behavior. Applications are often backed by models that learn from the user's experiences to provide personalized and responsive behavior. While models are often pre-trained on massive datasets, federated learning has gained attention for its ability to train globally shared models on users' private data without requiring the users to share their data directly. However, federated learning requires devices to collaborate via a central server, under the assumption that all users desire to learn the same model. We define a new approach, opportunistic federated learning, in which individual devices belonging to different users seek to learn robust models that are personalized to their user's own experiences. However, instead of learning in isolation, these models opportunistically incorporate the learned experiences of other devices they encounter opportunistically. In this paper, we explore the feasibility and limits of such an approach, culminating in a framework that supports encounter-based pairwise collaborative learning. The use of our opportunistic encounter-based learning amplifies the performance of personalized learning while resisting overfitting to encountered data.