Abstract:In this work, we aim to analyze and optimize the EnCLAP framework, a state-of-the-art model in automated audio captioning. We investigate the impact of modifying the acoustic encoder components, explore pretraining with different dataset scales, and study the effectiveness of a reranking scheme. Through extensive experimentation and quantitative analysis of generated captions, we develop EnCLAP++, an enhanced version that significantly surpasses the original.
Abstract:In this technical report, we describe our submission to DCASE2024 Challenge Task6 (Automated Audio Captioning) and Task8 (Language-based Audio Retrieval). We develop our approach building upon the EnCLAP audio captioning framework and optimizing it for Task6 of the challenge. Notably, we outline the changes in the underlying components and the incorporation of the reranking process. Additionally, we submit a supplementary retriever model, a byproduct of our modified framework, to Task8. Our proposed systems achieve FENSE score of 0.542 on Task6 and mAP@10 score of 0.386 on Task8, significantly outperforming the baseline models.
Abstract:We propose EnCLAP, a novel framework for automated audio captioning. EnCLAP employs two acoustic representation models, EnCodec and CLAP, along with a pretrained language model, BART. We also introduce a new training objective called masked codec modeling that improves acoustic awareness of the pretrained language model. Experimental results on AudioCaps and Clotho demonstrate that our model surpasses the performance of baseline models. Source code will be available at https://github.com/jaeyeonkim99/EnCLAP . An online demo is available at https://huggingface.co/spaces/enclap-team/enclap .
Abstract:In this paper, we present SANE-TTS, a stable and natural end-to-end multilingual TTS model. By the difficulty of obtaining multilingual corpus for given speaker, training multilingual TTS model with monolingual corpora is unavoidable. We introduce speaker regularization loss that improves speech naturalness during cross-lingual synthesis as well as domain adversarial training, which is applied in other multilingual TTS models. Furthermore, by adding speaker regularization loss, replacing speaker embedding with zero vector in duration predictor stabilizes cross-lingual inference. With this replacement, our model generates speeches with moderate rhythm regardless of source speaker in cross-lingual synthesis. In MOS evaluation, SANE-TTS achieves naturalness score above 3.80 both in cross-lingual and intralingual synthesis, where the ground truth score is 3.99. Also, SANE-TTS maintains speaker similarity close to that of ground truth even in cross-lingual inference. Audio samples are available on our web page.
Abstract:In this work, we propose a joint system combining a talking face generation system with a text-to-speech system that can generate multilingual talking face videos from only the text input. Our system can synthesize natural multilingual speeches while maintaining the vocal identity of the speaker, as well as lip movements synchronized to the synthesized speech. We demonstrate the generalization capabilities of our system by selecting four languages (Korean, English, Japanese, and Chinese) each from a different language family. We also compare the outputs of our talking face generation model to outputs of a prior work that claims multilingual support. For our demo, we add a translation API to the preprocessing stage and present it in the form of a neural dubber so that users can utilize the multilingual property of our system more easily.