Abstract:Customer churn prediction is a valuable task in many industries. In telecommunications it presents great challenges, given the high dimensionality of the data, and how difficult it is to identify underlying frustration signatures, which may represent an important driver regarding future churn behaviour. Here, we propose a novel Bayesian hierarchical joint model that is able to characterise customer profiles based on how many events take place within different television watching journeys, and how long it takes between events. The model drastically reduces the dimensionality of the data from thousands of observations per customer to 11 customer-level parameter estimates and random effects. We test our methodology using data from 40 BT customers (20 active and 20 who eventually cancelled their subscription) whose TV watching behaviours were recorded from October to December 2019, totalling approximately half a million observations. Employing different machine learning techniques using the parameter estimates and random effects from the Bayesian hierarchical model as features yielded up to 92\% accuracy predicting churn, associated with 100\% true positive rates and false positive rates as low as 14\% on a validation set. Our proposed methodology represents an efficient way of reducing the dimensionality of the data, while at the same time maintaining high descriptive and predictive capabilities. We provide code to implement the Bayesian model at https://github.com/rafamoral/profiling_tv_watching_behaviour.
Abstract:Recent studies have shown that neural models can achieve high performance on several sequence labelling/tagging problems without the explicit use of linguistic features such as part-of-speech (POS) tags. These models are trained only using the character-level and the word embedding vectors as inputs. Others have shown that linguistic features can improve the performance of neural models on tasks such as chunking and named entity recognition (NER). However, the change in performance depends on the degree of semantic relatedness between the linguistic features and the target task; in some instances, linguistic features can have a negative impact on performance. This paper presents an approach to jointly learn these linguistic features along with the target sequence labelling tasks with a new multi-task learning (MTL) framework called Gated Tasks Interaction (GTI) network for solving multiple sequence tagging tasks. The GTI network exploits the relations between the multiple tasks via neural gate modules. These gate modules control the flow of information between the different tasks. Experiments on benchmark datasets for chunking and NER show that our framework outperforms other competitive baselines trained with and without external training resources.
Abstract:Rankings, representing preferences over a set of candidates, are widely used in many information systems, e.g., group decision making. It is of great importance to evaluate the consensus of the obtained rankings from multiple agents. There is often no ground truth available for a ranking task. An overall measure of the consensus degree enables us to have a clear cognition about the ranking data. Moreover, it could provide a quantitative indicator for consensus comparison between groups and further improvement of a ranking system. In this paper, a novel consensus quantifying approach, without the need for any correlation or distance functions, is proposed based on a concept of q-support patterns of rankings. The q-support patterns represent the commonality embedded in a set of rankings. A method for detecting outliers in a set of rankings is naturally derived from the proposed consensus quantifying approach. Experimental studies are conducted to demonstrate the effectiveness of the proposed approach.