Abstract:While most images shared on the web and social media platforms are encoded in standard dynamic range (SDR), many displays now can accommodate high dynamic range (HDR) content. Additionally, modern cameras can capture images in an HDR format but convert them to SDR to ensure maximum compatibility with existing workflows and legacy displays. To support both SDR and HDR, new encoding formats are emerging that store additional metadata in SDR images in the form of a gain map. When applied to the SDR image, the gain map recovers the HDR version of the image as needed. These gain maps, however, are typically down-sampled and encoded using standard image compression, such as JPEG and HEIC, which can result in unwanted artifacts. In this paper, we propose to use a lightweight multi-layer perceptron (MLP) network to encode the gain map. The MLP is optimized using the SDR image information as input and provides superior performance in terms of HDR reconstruction. Moreover, the MLP-based approach uses a fixed memory footprint (10 KB) and requires no additional adjustments to accommodate different image sizes or encoding parameters. We conduct extensive experiments on various MLP based HDR embedding strategies and demonstrate that our approach outperforms the current state-of-the-art.
Abstract:Autoexposure (AE) is a critical step applied by camera systems to ensure properly exposed images. While current AE algorithms are effective in well-lit environments with constant illumination, these algorithms still struggle in environments with bright light sources or scenes with abrupt changes in lighting. A significant hurdle in developing new AE algorithms for challenging environments, especially those with time-varying lighting, is the lack of suitable image datasets. To address this issue, we have captured a new 4D exposure dataset that provides a large solution space (i.e., shutter speed range from (1/500 to 15 seconds) over a temporal sequence with moving objects, bright lights, and varying lighting. In addition, we have designed a software platform to allow AE algorithms to be used in a plug-and-play manner with the dataset. Our dataset and associate platform enable repeatable evaluation of different AE algorithms and provide a much-needed starting point to develop better AE methods. We examine several existing AE strategies using our dataset and show that most users prefer a simple saliency method for challenging lighting conditions.