Abstract:Aquatic mammals, such as pinnipeds, utilize their whiskers to detect and discriminate objects and analyze water movements, inspiring the development of robotic whiskers for sensing contacts, surfaces, and water flows. We present the design and application of underwater whisker sensors based on Fiber Bragg Grating (FBG) technology. These passive whiskers are mounted along the robot$'$s exterior to sense its surroundings through light, non-intrusive contacts. For contact tracking, we employ a sim-to-real learning framework, which involves extensive data collection in simulation followed by a sim-to-real calibration process to transfer the model trained in simulation to the real world. Experiments with whiskers immersed in water indicate that our approach can track contact points with an accuracy of $<2$ mm, without requiring precise robot proprioception. We demonstrate that the approach also generalizes to unseen objects.
Abstract:A social interaction is a social exchange between two or more individuals,where individuals modify and adjust their behaviors in response to their interaction partners. Our social interactions are one of most fundamental aspects of our lives and can profoundly affect our mood, both positively and negatively. With growing interest in virtual reality and avatar-mediated interactions,it is desirable to make these interactions natural and human like to promote positive effect in the interactions and applications such as intelligent tutoring systems, automated interview systems and e-learning. In this paper, we propose a method to generate facial behaviors for an agent. These behaviors include facial expressions and head pose and they are generated considering the users affective state. Our models learn semantically meaningful representations of the face and generate appropriate and temporally smooth facial behaviors in dyadic interactions.