Abstract:Recent advances in deep learning have improved 3D point cloud registration but increased graphics processing unit (GPU) memory usage, often requiring preliminary sampling that reduces accuracy. We propose an overlapping region sampling method to reduce memory usage while maintaining accuracy. Our approach estimates the overlapping region and intensively samples from it, using a k-nearest-neighbor (kNN) based point compression mechanism with multi layer perceptron (MLP) and transformer architectures. Evaluations on 3DMatch and 3DLoMatch datasets show our method outperforms other sampling methods in registration recall, especially at lower GPU memory levels. For 3DMatch, we achieve 94% recall with 33% reduced memory usage, with greater advantages in 3DLoMatch. Our method enables efficient large-scale point cloud registration in resource-constrained environments, maintaining high accuracy while significantly reducing memory requirements.
Abstract:Unsupervised intrinsic image decomposition (IID) is the process of separating a natural image into albedo and shade without these ground truths. A recent model employing light detection and ranging (LiDAR) intensity demonstrated impressive performance, though the necessity of LiDAR intensity during inference restricts its practicality. Thus, IID models employing only a single image during inference while keeping as high IID quality as the one with an image plus LiDAR intensity are highly desired. To address this challenge, we propose a novel approach that utilizes only an image during inference while utilizing an image and LiDAR intensity during training. Specifically, we introduce a partially-shared model that accepts an image and LiDAR intensity individually using a different specific encoder but processes them together in specific components to learn shared representations. In addition, to enhance IID quality, we propose albedo-alignment loss and image-LiDAR conversion (ILC) paths. Albedo-alignment loss aligns the gray-scale albedo from an image to that inferred from LiDAR intensity, thereby reducing cast shadows in albedo from an image due to the absence of cast shadows in LiDAR intensity. Furthermore, to translate the input image into albedo and shade style while keeping the image contents, the input image is separated into style code and content code by encoders. The ILC path mutually translates the image and LiDAR intensity, which share content but differ in style, contributing to the distinct differentiation of style from content. Consequently, LIET achieves comparable IID quality to the existing model with LiDAR intensity, while utilizing only an image without LiDAR intensity during inference.