Abstract:Federated learning enables multiple participants to collaboratively train a model without aggregating the training data. Although the training data are kept within each participant and the local gradients can be securely synthesized, recent studies have shown that such privacy protection is insufficient. The global model parameters that have to be shared for optimization are susceptible to leak information about training data. In this work, we propose Confined Gradient Descent (CGD) that enhances privacy of federated learning by eliminating the sharing of global model parameters. CGD exploits the fact that a gradient descent optimization can start with a set of discrete points and converges to another set at the neighborhood of the global minimum of the objective function. It lets the participants independently train on their local data, and securely share the sum of local gradients to benefit each other. We formally demonstrate CGD's privacy enhancement over traditional FL. We prove that less information is exposed in CGD compared to that of traditional FL. CGD also guarantees desired model accuracy. We theoretically establish a convergence rate for CGD. We prove that the loss of the proprietary models learned for each participant against a model learned by aggregated training data is bounded. Extensive experimental results on two real-world datasets demonstrate the performance of CGD is comparable with the centralized learning, with marginal differences on validation loss (mostly within 0.05) and accuracy (mostly within 1%).
Abstract:This paper sets the context for the urgency for cyber autonomy, and the current gaps of the cyber security industry. A novel framework proposing four phases of maturity for full cyber autonomy will be discussed. The paper also reviews new and emerging cyber security automation techniques and tools, and discusses their impact on society, the perceived cyber security skills gap/shortage and national security. We will also be discussing the delicate balance between national security, human rights and ethics, and the potential demise of the manual penetration testing industry in the face of automation.
Abstract:The Semantic Web initiative puts emphasis not primarily on putting data on the Web, but rather on creating links in a way that both humans and machines can explore the Web of data. When such users access the Web, they leave a trail as Web servers maintain a history of requests. Web usage mining approaches have been studied since the beginning of the Web given the log's huge potential for purposes such as resource annotation, personalization, forecasting etc. However, the impact of any such efforts has not really gone beyond generating statistics detailing who, when, and how Web pages maintained by a Web server were visited.