Abstract:This study addresses the issue of speaker gender bias in Speech Translation (ST) systems, which can lead to offensive and inaccurate translations. The masculine bias often found in large-scale ST systems is typically perpetuated through training data derived from Machine Translation (MT) systems. Our approach involves two key steps. First, we employ Large Language Models (LLMs) to rectify translations based on the speaker's gender in a cost-effective manner. Second, we fine-tune the ST model with the corrected data, enabling the model to generate gender-specific translations directly from audio cues, without the need for explicit gender input. Additionally, we propose a three-mode fine-tuned model for scenarios where the speaker's gender is either predefined or should not be inferred from speech cues. We demonstrate a 70% improvement in translations for female speakers compared to our baseline and other large-scale ST systems, such as Seamless M4T and Canary, on the MuST-SHE test set.
Abstract:Word error rate (WER) is a standard metric for the evaluation of Automated Speech Recognition (ASR) systems. However, WER fails to provide a fair evaluation of human perceived quality in presence of spelling variations, abbreviations, or compound words arising out of agglutination. Multiple spelling variations might be acceptable based on locale/geography, alternative abbreviations, borrowed words, and transliteration of code-mixed words from a foreign language to the target language script. Similarly, in case of agglutination, often times the agglutinated, as well as the split forms, are acceptable. Previous work handled this problem by using manually identified normalization pairs and applying them to both the transcription and the hypothesis before computing WER. In this paper, we propose an automatic WER normalization system consisting of two modules: spelling normalization and segmentation normalization. The proposed system is unsupervised and language agnostic, and therefore scalable. Experiments with ASR on 35K utterances across four languages yielded an average WER reduction of 13.28%. Human judgements of these automatically identified normalization pairs show that our WER-normalized evaluation is highly consistent with the perceived quality of ASR output.