Abstract:Logs produced by extensive software systems are integral to monitoring system behaviors. Advanced log analysis facilitates the detection, alerting, and diagnosis of system faults. Log parsing, which entails transforming raw log messages into structured templates, constitutes a critical phase in the automation of log analytics. Existing log parsers fail to identify the correct templates due to reliance on human-made rules. Besides, These methods focus on statistical features while ignoring semantic information in log messages. To address these challenges, we introduce a cutting-edge \textbf{L}og parsing framework with \textbf{E}ntropy sampling and Chain-of-Thought \textbf{M}erging (Lemur). Specifically, to discard the tedious manual rules. We propose a novel sampling method inspired by information entropy, which efficiently clusters typical logs. Furthermore, to enhance the merging of log templates, we design a chain-of-thought method for large language models (LLMs). LLMs exhibit exceptional semantic comprehension, deftly distinguishing between parameters and invariant tokens. We have conducted experiments on large-scale public datasets. Extensive evaluation demonstrates that Lemur achieves the state-of-the-art performance and impressive efficiency.
Abstract:In spite of the rapid advancements in unsupervised log anomaly detection techniques, the current mainstream models still necessitate specific training for individual system datasets, resulting in costly procedures and limited scalability due to dataset size, thereby leading to performance bottlenecks. Furthermore, numerous models lack cognitive reasoning capabilities, posing challenges in direct transferability to similar systems for effective anomaly detection. Additionally, akin to reconstruction networks, these models often encounter the "identical shortcut" predicament, wherein the majority of system logs are classified as normal, erroneously predicting normal classes when confronted with rare anomaly logs due to reconstruction errors. To address the aforementioned issues, we propose MLAD, a novel anomaly detection model that incorporates semantic relational reasoning across multiple systems. Specifically, we employ Sentence-bert to capture the similarities between log sequences and convert them into highly-dimensional learnable semantic vectors. Subsequently, we revamp the formulas of the Attention layer to discern the significance of each keyword in the sequence and model the overall distribution of the multi-system dataset through appropriate vector space diffusion. Lastly, we employ a Gaussian mixture model to highlight the uncertainty of rare words pertaining to the "identical shortcut" problem, optimizing the vector space of the samples using the maximum expectation model. Experiments on three real-world datasets demonstrate the superiority of MLAD.