Abstract:Breast cancer (BC) stands as one of the most common malignancies affecting women worldwide, necessitating advancements in diagnostic methodologies for better clinical outcomes. This article provides a comprehensive exploration of the application of Explainable Artificial Intelligence (XAI) techniques in the detection and diagnosis of breast cancer. As Artificial Intelligence (AI) technologies continue to permeate the healthcare sector, particularly in oncology, the need for transparent and interpretable models becomes imperative to enhance clinical decision-making and patient care. This review discusses the integration of various XAI approaches, such as SHAP, LIME, Grad-CAM, and others, with machine learning and deep learning models utilized in breast cancer detection and classification. By investigating the modalities of breast cancer datasets, including mammograms, ultrasounds and their processing with AI, the paper highlights how XAI can lead to more accurate diagnoses and personalized treatment plans. It also examines the challenges in implementing these techniques and the importance of developing standardized metrics for evaluating XAI's effectiveness in clinical settings. Through detailed analysis and discussion, this article aims to highlight the potential of XAI in bridging the gap between complex AI models and practical healthcare applications, thereby fostering trust and understanding among medical professionals and improving patient outcomes.
Abstract:The study introduces an integrated framework combining Convolutional Neural Networks (CNNs) and Explainable Artificial Intelligence (XAI) for the enhanced diagnosis of breast cancer using the CBIS-DDSM dataset. Utilizing a fine-tuned ResNet50 architecture, our investigation not only provides effective differentiation of mammographic images into benign and malignant categories but also addresses the opaque "black-box" nature of deep learning models by employing XAI methodologies, namely Grad-CAM, LIME, and SHAP, to interpret CNN decision-making processes for healthcare professionals. Our methodology encompasses an elaborate data preprocessing pipeline and advanced data augmentation techniques to counteract dataset limitations, and transfer learning using pre-trained networks, such as VGG-16, DenseNet and ResNet was employed. A focal point of our study is the evaluation of XAI's effectiveness in interpreting model predictions, highlighted by utilising the Hausdorff measure to assess the alignment between AI-generated explanations and expert annotations quantitatively. This approach plays a critical role for XAI in promoting trustworthiness and ethical fairness in AI-assisted diagnostics. The findings from our research illustrate the effective collaboration between CNNs and XAI in advancing diagnostic methods for breast cancer, thereby facilitating a more seamless integration of advanced AI technologies within clinical settings. By enhancing the interpretability of AI-driven decisions, this work lays the groundwork for improved collaboration between AI systems and medical practitioners, ultimately enriching patient care. Furthermore, the implications of our research extend well beyond the current methodologies, advocating for subsequent inquiries into the integration of multimodal data and the refinement of AI explanations to satisfy the needs of clinical practice.
Abstract:In the past decade, the deployment of deep learning (Artificial Intelligence (AI)) methods has become pervasive across a spectrum of real-world applications, often in safety-critical contexts. This comprehensive research article rigorously investigates the ethical dimensions intricately linked to the rapid evolution of AI technologies, with a particular focus on the healthcare domain. Delving deeply, it explores a multitude of facets including transparency, adept data management, human oversight, educational imperatives, and international collaboration within the realm of AI advancement. Central to this article is the proposition of a conscientious AI framework, meticulously crafted to accentuate values of transparency, equity, answerability, and a human-centric orientation. The second contribution of the article is the in-depth and thorough discussion of the limitations inherent to AI systems. It astutely identifies potential biases and the intricate challenges of navigating multifaceted contexts. Lastly, the article unequivocally accentuates the pressing need for globally standardized AI ethics principles and frameworks. Simultaneously, it aptly illustrates the adaptability of the ethical framework proposed herein, positioned skillfully to surmount emergent challenges.
Abstract:People all over the globe are affected by pneumonia but deaths due to it are highest in Sub-Saharan Asia and South Asia. In recent years, the overall incidence and mortality rate of pneumonia regardless of the utilization of effective vaccines and compelling antibiotics has escalated. Thus, pneumonia remains a disease that needs spry prevention and treatment. The widespread prevalence of pneumonia has caused the research community to come up with a framework that helps detect, diagnose and analyze diseases accurately and promptly. One of the major hurdles faced by the Artificial Intelligence (AI) research community is the lack of publicly available datasets for chest diseases, including pneumonia . Secondly, few of the available datasets are highly imbalanced (normal examples are over sampled, while samples with ailment are in severe minority) making the problem even more challenging. In this article we present a novel framework for the detection of pneumonia. The novelty of the proposed methodology lies in the tackling of class imbalance problem. The Generative Adversarial Network (GAN), specifically a combination of Deep Convolutional Generative Adversarial Network (DCGAN) and Wasserstein GAN gradient penalty (WGAN-GP) was applied on the minority class ``Pneumonia'' for augmentation, whereas Random Under-Sampling (RUS) was done on the majority class ``No Findings'' to deal with the imbalance problem. The ChestX-Ray8 dataset, one of the biggest datasets, is used to validate the performance of the proposed framework. The learning phase is completed using transfer learning on state-of-the-art deep learning models i.e. ResNet-50, Xception, and VGG-16. Results obtained exceed state-of-the-art.
Abstract:In the last decade, researchers working in the domain of computer vision and Artificial Intelligence (AI) have beefed up their efforts to come up with the automated framework that not only detects but also identifies stage of breast cancer. The reason for this surge in research activities in this direction are mainly due to advent of robust AI algorithms (deep learning), availability of hardware that can train those robust and complex AI algorithms and accessibility of large enough dataset required for training AI algorithms. Different imaging modalities that have been exploited by researchers to automate the task of breast cancer detection are mammograms, ultrasound, magnetic resonance imaging, histopathological images or any combination of them. This article analyzes these imaging modalities and presents their strengths, limitations and enlists resources from where their datasets can be accessed for research purpose. This article then summarizes AI and computer vision based state-of-the-art methods proposed in the last decade, to detect breast cancer using various imaging modalities. Generally, in this article we have focused on to review frameworks that have reported results using mammograms as it is most widely used breast imaging modality that serves as first test that medical practitioners usually prescribe for the detection of breast cancer. Second reason of focusing on mammogram imaging modalities is the availability of its labeled datasets. Datasets availability is one of the most important aspect for the development of AI based frameworks as such algorithms are data hungry and generally quality of dataset affects performance of AI based algorithms. In a nutshell, this research article will act as a primary resource for the research community working in the field of automated breast imaging analysis.
Abstract:Given the ubiquity of handwritten documents in human transactions, Optical Character Recognition (OCR) of documents have invaluable practical worth. Optical character recognition is a science that enables to translate various types of documents or images into analyzable, editable and searchable data. During last decade, researchers have used artificial intelligence / machine learning tools to automatically analyze handwritten and printed documents in order to convert them into electronic format. The objective of this review paper is to summarize research that has been conducted on character recognition of handwritten documents and to provide research directions. In this Systematic Literature Review (SLR) we collected, synthesized and analyzed research articles on the topic of handwritten OCR (and closely related topics) which were published between year 2000 to 2018. We followed widely used electronic databases by following pre-defined review protocol. Articles were searched using keywords, forward reference searching and backward reference searching in order to search all the articles related to the topic. After carefully following study selection process 142 articles were selected for this SLR. This review article serves the purpose of presenting state of the art results and techniques on OCR and also provide research directions by highlighting research gaps.
Abstract:Computer vision and machine learning are the linchpin of field of automation. The medicine industry has adopted numerous methods to discover the root causes of many diseases in order to automate detection process. But, the biomarkers of Autism Spectrum Disorder (ASD) are still unknown, let alone automating its detection, due to intense connectivity of neurological pattern in brain. Studies from the neuroscience domain highlighted the fact that corpus callosum and intracranial brain volume holds significant information for detection of ASD. Such results and studies are not tested and verified by scientists working in the domain of computer vision / machine learning. Thus, in this study we have applied machine learning algorithms on features extracted from corpus callosum and intracranial brain volume data. Corpus callosum and intracranial brain volume data is obtained from s-MRI (structural Magnetic Resonance Imaging) data-set known as ABIDE (Autism Brain Imaging Data Exchange). Our proposed framework for automatic detection of ASD showed potential of machine learning algorithms for development of neuroimaging data understanding and detection of ASD. Proposed framework enhanced achieved accuracy by calculating weights / importance of features extracted from corpus callosum and intracranial brain volume data.
Abstract:Computing environment is moving towards human-centered designs instead of computer centered designs and human's tend to communicate wealth of information through affective states or expressions. Traditional Human Computer Interaction (HCI) based systems ignores bulk of information communicated through those affective states and just caters for user's intentional input. Generally, for evaluating and benchmarking different facial expression analysis algorithms, standardized databases are needed to enable a meaningful comparison. In the absence of comparative tests on such standardized databases it is difficult to find relative strengths and weaknesses of different facial expression recognition algorithms. In this article we present a novel video database for Children's Spontaneous facial Expressions (LIRIS-CSE). Proposed video database contains six basic spontaneous facial expressions shown by 12 ethnically diverse children between the ages of 6 and 12 years with mean age of 7.3 years. To the best of our knowledge, this database is first of its kind as it records and shows spontaneous facial expressions of children. Previously there were few database of children expressions and all of them show posed or exaggerated expressions which are different from spontaneous or natural expressions. Thus, this database will be a milestone for human behavior researchers. This database will be a excellent resource for vision community for benchmarking and comparing results. In this article, we have also proposed framework for automatic expression recognition based on convolutional neural network (CNN) architecture with transfer learning approach. Proposed architecture achieved average classification accuracy of 75% on our proposed database i.e. LIRIS-CSE.
Abstract:Spectral imaging has recently gained traction for face recognition in biometric systems. We investigate the merits of spectral imaging for face recognition and the current challenges that hamper the widespread deployment of spectral sensors for face recognition. The reliability of conventional face recognition systems operating in the visible range is compromised by illumination changes, pose variations and spoof attacks. Recent works have reaped the benefits of spectral imaging to counter these limitations in surveillance activities (defence, airport security checks, etc.). However, the implementation of this technology for biometrics, is still in its infancy due to multiple reasons. We present an overview of the existing work in the domain of spectral imaging for face recognition, different types of modalities and their assessment, availability of public databases for sake of reproducible research as well as evaluation of algorithms, and recent advancements in the field, such as, the use of deep learning-based methods for recognizing faces from spectral images.
Abstract:This article presents an extensive literature review of technology based intervention methodologies for individuals facing Autism Spectrum Disorder (ASD). Reviewed methodologies include: contemporary Computer Aided Systems (CAS), Computer Vision Assisted Technologies (CVAT) and Virtual Reality (VR) or Artificial Intelligence-Assisted interventions. The research over the past decade has provided enough demonstrations that individuals of ASD have a strong interest in technology based interventions and can connect with them for longer durations without facing any trouble(s). Theses technology based interventions are useful for individuals facing autism in clinical settings as well as at home and classrooms. Despite showing great promise, research in developing an advanced technology based intervention that is clinically quantitative for ASD is minimal. Moreover, the clinicians are generally not convinced about the potential of the technology based interventions due to non-empirical nature of published results. A major reason behind this non-acceptability is a vast majority of studies on distinct intervention methodologies do not follow any specific standard or research design. Consequently, the data produced by these studies is minimally appealing to the clinical community. This research domain has a vast social impact as per official statistics given by the Autism Society of America, autism is the fastest growing developmental disability in the United States (US). The estimated annual cost in the US for diagnosis and treatment for ASD is 236-262 Billion US Dollars. The cost of up-bringing an ASD individual is estimated to be 1.4 million USD while statistics show 1% of the worlds' total population is suffering from ASD.