Abstract:Personalized multiple clustering aims to generate diverse partitions of a dataset based on different user-specific aspects, rather than a single clustering. It has recently drawn research interest for accommodating varying user preferences. Recent approaches primarily use CLIP embeddings with proxy learning to extract representations biased toward user clustering preferences. However, CLIP primarily focuses on coarse image-text alignment, lacking a deep contextual understanding of user interests. To overcome these limitations, we propose an agent-centric personalized clustering framework that leverages multi-modal large language models (MLLMs) as agents to comprehensively traverse a relational graph to search for clusters based on user interests. Due to the advanced reasoning mechanism of MLLMs, the obtained clusters align more closely with user-defined criteria than those obtained from CLIP-based representations. To reduce computational overhead, we shorten the agents' traversal path by constructing a relational graph using user-interest-biased embeddings extracted by MLLMs. A large number of weakly connected edges can be filtered out based on embedding similarity, facilitating an efficient traversal search for agents. Experimental results show that the proposed method achieves NMI scores of 0.9667 and 0.9481 on the Card Order and Card Suits benchmarks, respectively, largely improving the SOTA model by over 140%.
Abstract:Autonomous highlight detection is crucial for enhancing the efficiency of video browsing on social media platforms. To attain this goal in a data-driven way, one may often face the situation where highlight annotations are not available on the target video category used in practice, while the supervision on another video category (named as source video category) is achievable. In such a situation, one can derive an effective highlight detector on target video category by transferring the highlight knowledge acquired from source video category to the target one. We call this problem cross-category video highlight detection, which has been rarely studied in previous works. For tackling such practical problem, we propose a Dual-Learner-based Video Highlight Detection (DL-VHD) framework. Under this framework, we first design a Set-based Learning module (SL-module) to improve the conventional pair-based learning by assessing the highlight extent of a video segment under a broader context. Based on such learning manner, we introduce two different learners to acquire the basic distinction of target category videos and the characteristics of highlight moments on source video category, respectively. These two types of highlight knowledge are further consolidated via knowledge distillation. Extensive experiments on three benchmark datasets demonstrate the superiority of the proposed SL-module, and the DL-VHD method outperforms five typical Unsupervised Domain Adaptation (UDA) algorithms on various cross-category highlight detection tasks. Our code is available at https://github.com/ChrisAllenMing/Cross_Category_Video_Highlight .