Abstract:This paper focuses on the problem of detecting out-of-distribution (ood) samples with neural nets. In image recognition tasks, the trained classifier often gives high confidence score for input images which are remote from the in-distribution (id) data, and this has greatly limited its application in real world. For alleviating this problem, we propose a GAN based boundary aware classifier (GBAC) for generating a closed hyperspace which only contains most id data. Our method is based on the fact that the traditional neural net seperates the feature space as several unclosed regions which are not suitable for ood detection. With GBAC as an auxiliary module, the ood data distributed outside the closed hyperspace will be assigned with much lower score, allowing more effective ood detection while maintaining the classification performance. Moreover, we present a fast sampling method for generating hard ood representations which lie on the boundary of pre-mentioned closed hyperspace. Experiments taken on several datasets and neural net architectures promise the effectiveness of GBAC.
Abstract:Clothing changes and lack of data labels are both crucial challenges in person ReID. For the former challenge, people may occur multiple times at different locations wearing different clothing. However, most of the current person ReID research works focus on the benchmarks in which a person's clothing is kept the same all the time. For the last challenge, some researchers try to make model learn information from a labeled dataset as a source to an unlabeled dataset. Whereas purely unsupervised training is less used. In this paper, we aim to solve both problems at the same time. We design a novel unsupervised model, Sync-Person-Cloud ReID, to solve the unsupervised clothing change person ReID problem. We developer a purely unsupervised clothing change person ReID pipeline with person sync augmentation operation and same person feature restriction. The person sync augmentation is to supply additional same person resources. These same person's resources can be used as part supervised input by same person feature restriction. The extensive experiments on clothing change ReID datasets show the out-performance of our methods.