Abstract:Chunking information is a key step in Retrieval Augmented Generation (RAG). Current research primarily centers on paragraph-level chunking. This approach treats all texts as equal and neglects the information contained in the structure of documents. We propose an expanded approach to chunk documents by moving beyond mere paragraph-level chunking to chunk primary by structural element components of documents. Dissecting documents into these constituent elements creates a new way to chunk documents that yields the best chunk size without tuning. We introduce a novel framework that evaluates how chunking based on element types annotated by document understanding models contributes to the overall context and accuracy of the information retrieved. We also demonstrate how this approach impacts RAG assisted Question & Answer task performance. Our research includes a comprehensive analysis of various element types, their role in effective information retrieval, and the impact they have on the quality of RAG outputs. Findings support that element type based chunking largely improve RAG results on financial reporting. Through this research, we are also able to answer how to uncover highly accurate RAG.
Abstract:The prevalence of mental disorders has become a significant issue, leading to the increased focus on Emotional Support Conversation as an effective supplement for mental health support. Existing methods have achieved compelling results, however, they still face three challenges: 1) variability of emotions, 2) practicality of the response, and 3) intricate strategy modeling. To address these challenges, we propose a novel knowledge-enhanced Memory mODEl for emotional suppoRt coNversation (MODERN). Specifically, we first devise a knowledge-enriched dialogue context encoding to perceive the dynamic emotion change of different periods of the conversation for coherent user state modeling and select context-related concepts from ConceptNet for practical response generation. Thereafter, we implement a novel memory-enhanced strategy modeling module to model the semantic patterns behind the strategy categories. Extensive experiments on a widely used large-scale dataset verify the superiority of our model over cutting-edge baselines.
Abstract:Paraphrase Identification is a fundamental task in Natural Language Processing. While much progress has been made in the field, the performance of many state-of-the-art models often suffer from distribution shift during inference time. We verify that a major source of this performance drop comes from biases introduced by negative examples. To overcome these biases, we propose in this paper to train two separate models, one that only utilizes the positive pairs and the other the negative pairs. This enables us the option of deciding how much to utilize the negative model, for which we introduce a perplexity based out-of-distribution metric that we show can effectively and automatically determine how much weight it should be given during inference. We support our findings with strong empirical results.