Abstract:The detection of emotions using an Electroencephalogram (EEG) is a crucial area in brain-computer interfaces and has valuable applications in fields such as rehabilitation and medicine. In this study, we employed transfer learning to overcome the challenge of limited data availability in EEG-based emotion detection. The base model used in this study was Resnet50. Additionally, we employed a novel feature combination in EEG-based emotion detection. The input to the model was in the form of an image matrix, which comprised Mean Phase Coherence (MPC) and Magnitude Squared Coherence (MSC) in the upper-triangular and lower-triangular matrices, respectively. We further improved the technique by incorporating features obtained from the Differential Entropy (DE) into the diagonal, which previously held little to no useful information for classifying emotions. The dataset used in this study, SEED EEG (62 channel EEG), comprises three classes (Positive, Neutral, and Negative). We calculated both subject-independent and subject-dependent accuracy. The subject-dependent accuracy was obtained using a 10-fold cross-validation method and was 93.1%, while the subject-independent classification was performed by employing the leave-one-subject-out (LOSO) strategy. The accuracy obtained in subject-independent classification was 71.6%. Both of these accuracies are at least twice better than the chance accuracy of classifying 3 classes. The study found the use of MSC and MPC in EEG-based emotion detection promising for emotion classification. The future scope of this work includes the use of data augmentation techniques, enhanced classifiers, and better features for emotion classification.
Abstract:The DISPLACE challenge entails a first-of-kind task to perform speaker and language diarization on the same data, as the data contains multi-speaker social conversations in multilingual code-mixed speech. The challenge attempts to benchmark and improve Speaker Diarization (SD) in multilingual settings and Language Diarization (LD) in multi-speaker settings. For this challenge, a natural multilingual, multi-speaker conversational dataset is distributed for development and evaluation purposes. Automatic systems are evaluated on single-channel far-field recordings containing natural code-mix, code-switch, overlap, reverberation, short turns, short pauses, and multiple dialects of the same language. A total of 60 teams from industry and academia have registered for this challenge.