Abstract:The detection of emotions using an Electroencephalogram (EEG) is a crucial area in brain-computer interfaces and has valuable applications in fields such as rehabilitation and medicine. In this study, we employed transfer learning to overcome the challenge of limited data availability in EEG-based emotion detection. The base model used in this study was Resnet50. Additionally, we employed a novel feature combination in EEG-based emotion detection. The input to the model was in the form of an image matrix, which comprised Mean Phase Coherence (MPC) and Magnitude Squared Coherence (MSC) in the upper-triangular and lower-triangular matrices, respectively. We further improved the technique by incorporating features obtained from the Differential Entropy (DE) into the diagonal, which previously held little to no useful information for classifying emotions. The dataset used in this study, SEED EEG (62 channel EEG), comprises three classes (Positive, Neutral, and Negative). We calculated both subject-independent and subject-dependent accuracy. The subject-dependent accuracy was obtained using a 10-fold cross-validation method and was 93.1%, while the subject-independent classification was performed by employing the leave-one-subject-out (LOSO) strategy. The accuracy obtained in subject-independent classification was 71.6%. Both of these accuracies are at least twice better than the chance accuracy of classifying 3 classes. The study found the use of MSC and MPC in EEG-based emotion detection promising for emotion classification. The future scope of this work includes the use of data augmentation techniques, enhanced classifiers, and better features for emotion classification.
Abstract:The recent advances in the field of deep learning have not been fully utilised for decoding imagined speech primarily because of the unavailability of sufficient training samples to train a deep network. In this paper, we present a novel architecture that employs deep neural network (DNN) for classifying the words "in" and "cooperate" from the corresponding EEG signals in the ASU imagined speech dataset. Nine EEG channels, which best capture the underlying cortical activity, are chosen using common spatial pattern (CSP) and are treated as independent data vectors. Discrete wavelet transform (DWT) is used for feature extraction. To the best of our knowledge, so far DNN has not been employed as a classifier in decoding imagined speech. Treating the selected EEG channels corresponding to each imagined word as independent data vectors helps in providing sufficient number of samples to train a DNN. For each test trial, the final class label is obtained by applying a majority voting on the classification results of the individual channels considered in the trial. We have achieved accuracies comparable to the state-of-the-art results. The results can be further improved by using a higher-density EEG acquisition system in conjunction with other deep learning techniques such as long short-term memory.
Abstract:This paper proposes a novel approach that uses deep neural networks for classifying imagined speech, significantly increasing the classification accuracy. The proposed approach employs only the EEG channels over specific areas of the brain for classification, and derives distinct feature vectors from each of those channels. This gives us more data to train a classifier, enabling us to use deep learning approaches. Wavelet and temporal domain features are extracted from each channel. The final class label of each test trial is obtained by applying a majority voting on the classification results of the individual channels considered in the trial. This approach is used for classifying all the 11 prompts in the KaraOne dataset of imagined speech. The proposed architecture and the approach of treating the data have resulted in an average classification accuracy of 57.15%, which is an improvement of around 35% over the state-of-the-art results.
Abstract:Cerebrovascular accident (CVA) or stroke is the rapid loss of brain function due to disturbance in the blood supply to the brain. Statistically, stroke is the second leading cause of death. This has motivated us to suggest a two-tier system for predicting stroke; the first tier makes use of Artificial Neural Network (ANN) to predict the chances of a person suffering from stroke. The ANN is trained the using the values of various risk factors of stroke of several patients who had stroke. Once a person is classified as having a high risk of stroke, s/he undergoes another the tier-2 classification test where his/her neuro MRI (Magnetic resonance imaging) is analysed to predict the chances of stroke. The tier-2 uses Non-negative Matrix Factorization and Haralick Textural features for feature extraction and SVM classifier for classification. We have obtained an accuracy of 96.67% in tier-1 and an accuracy of 70% in tier-2.
Abstract:This work proposes improvements in the electroencephalogram (EEG) recording protocols for motor imagery through the introduction of actual motor movement and/or somatosensory cues. The results obtained demonstrate the advantage of requiring the subjects to perform motor actions following the trials of imagery. By introducing motor actions in the protocol, the subjects are able to perform actual motor planning, rather than just visualizing the motor movement, thus greatly improving the ease with which the motor movements can be imagined. This study also probes the added advantage of administering somatosensory cues in the subject, as opposed to the conventional auditory/visual cues. These changes in the protocol show promise in terms of the aptness of the spatial filters obtained on the data, on application of the well-known common spatial pattern (CSP) algorithms. The regions highlighted by the spatial filters are more localized and consistent across the subjects when the protocol is augmented with somatosensory stimuli. Hence, we suggest that this may prove to be a better EEG acquisition protocol for detecting brain activation in response to intended motor commands in (clinically) paralyzed/locked-in patients.
Abstract:The revolutionary developments in the field of supervised machine learning have paved way to the development of CAD tools for assisting doctors in diagnosis. Recently, the former has been employed in the prediction of neurological disorders such as Alzheimer's disease. We propose a CAD (Computer Aided Diagnosis tool for differentiating neural lesions caused by CVA (Cerebrovascular Accident) from the lesions caused by other neural disorders by using Non-negative Matrix Factorisation (NMF) and Haralick features for feature extraction and SVM (Support Vector Machine) for pattern recognition. We also introduce a multi-level classification system that has better classification efficiency, sensitivity and specificity when compared to systems using NMF or Haralick features alone as features for classification. Cross-validation was performed using LOOCV (Leave-One-Out Cross Validation) method and our proposed system has a classification accuracy of over 86%.