Abstract:The rapid growth of AI in poultry farming has highlighted the challenge of efficiently labeling large, diverse datasets. Manual annotation is time-consuming, making it impractical for modern systems that continuously generate data. This study explores semi-supervised auto-labeling methods, integrating active learning, and prompt-then-detect paradigm to develop an efficient framework for auto-labeling of large poultry datasets aimed at advancing AI-driven behavior and health monitoring. Viideo data were collected from broilers and laying hens housed at the University of Arkansas and the University of Georgia. The collected videos were converted into images, pre-processed, augmented, and labeled. Various machine learning models, including zero-shot models like Grounding DINO, YOLO-World, and CLIP, and supervised models like YOLO and Faster-RCNN, were utilized for broilers, hens, and behavior detection. The results showed that YOLOv8s-World and YOLOv9s performed better when compared performance metrics for broiler and hen detection under supervised learning, while among the semi-supervised model, YOLOv8s-ALPD achieved the highest precision (96.1%) and recall (99.0%) with an RMSE of 1.9. The hybrid YOLO-World model, incorporating the optimal YOLOv8s backbone, demonstrated the highest overall performance. It achieved a precision of 99.2%, recall of 99.4%, and an F1 score of 98.7% for breed detection, alongside a precision of 88.4%, recall of 83.1%, and an F1 score of 84.5% for individual behavior detection. Additionally, semi-supervised models showed significant improvements in behavior detection, achieving up to 31% improvement in precision and 16% in F1-score. The semi-supervised models with minimal active learning reduced annotation time by over 80% compared to full manual labeling. Moreover, integrating zero-shot models enhanced detection and behavior identification.
Abstract:Due to intensive genetic selection for rapid growth rates and high broiler yields in recent years, the global poultry industry has faced a challenging problem in the form of woody breast (WB) conditions. This condition has caused significant economic losses as high as $200 million annually, and the root cause of WB has yet to be identified. Human palpation is the most common method of distinguishing a WB from others. However, this method is time-consuming and subjective. Hyperspectral imaging (HSI) combined with machine learning algorithms can evaluate the WB conditions of fillets in a non-invasive, objective, and high-throughput manner. In this study, 250 raw chicken breast fillet samples (normal, mild, severe) were taken, and spatially heterogeneous hardness distribution was first considered when designing HSI processing models. The study not only classified the WB levels from HSI but also built a regression model to correlate the spectral information with sample hardness data. To achieve a satisfactory classification and regression model, a neural network architecture search (NAS) enabled a wide-deep neural network model named NAS-WD, which was developed. In NAS-WD, NAS was first used to automatically optimize the network architecture and hyperparameters. The classification results show that NAS-WD can classify the three WB levels with an overall accuracy of 95%, outperforming the traditional machine learning model, and the regression correlation between the spectral data and hardness was 0.75, which performs significantly better than traditional regression models.