Abstract:This research paper focuses on the problem of dynamic objects and their impact on effective motion planning and localization. The paper proposes a two-step process to address this challenge, which involves finding the dynamic objects in the scene using a Flow-based method and then using a deep Video inpainting algorithm to remove them. The study aims to test the validity of this approach by comparing it with baseline results using two state-of-the-art SLAM algorithms, ORB-SLAM2 and LSD, and understanding the impact of dynamic objects and the corresponding trade-offs. The proposed approach does not require any significant modifications to the baseline SLAM algorithms, and therefore, the computational effort required remains unchanged. The paper presents a detailed analysis of the results obtained and concludes that the proposed method is effective in removing dynamic objects from the scene, leading to improved SLAM performance.
Abstract:Rotational displacement about the grasping point is a common grasp failure when an object is grasped at a location away from its center of gravity. Tactile sensors with soft surfaces, such as GelSight sensors, can detect the rotation patterns on the contacting surfaces when the object rotates. In this work, we propose a model-based algorithm that detects those rotational patterns and measures rotational displacement using the GelSight sensor. We also integrate the rotation detection feedback into a closed-loop regrasping framework, which detects the rotational failure of grasp in an early stage and drives the robot to a stable grasp pose. We validate our proposed rotation detection algorithm and grasp-regrasp system on self-collected dataset and online experiments to show how our approach accurately detects the rotation and increases grasp stability.