Abstract:Integrating large language models (LLMs) with rule-based reasoning offers a powerful solution for improving the flexibility and reliability of Knowledge Base Completion (KBC). Traditional rule-based KBC methods offer verifiable reasoning yet lack flexibility, while LLMs provide strong semantic understanding yet suffer from hallucinations. With the aim of combining LLMs' understanding capability with the logical and rigor of rule-based approaches, we propose a novel framework consisting of a Subgraph Extractor, an LLM Proposer, and a Rule Reasoner. The Subgraph Extractor first samples subgraphs from the KB. Then, the LLM uses these subgraphs to propose diverse and meaningful rules that are helpful for inferring missing facts. To effectively avoid hallucination in LLMs' generations, these proposed rules are further refined by a Rule Reasoner to pinpoint the most significant rules in the KB for Knowledge Base Completion. Our approach offers several key benefits: the utilization of LLMs to enhance the richness and diversity of the proposed rules and the integration with rule-based reasoning to improve reliability. Our method also demonstrates strong performance across diverse KB datasets, highlighting the robustness and generalizability of the proposed framework.
Abstract:In the field of low-light image enhancement, both traditional Retinex methods and advanced deep learning techniques such as Retinexformer have shown distinct advantages and limitations. Traditional Retinex methods, designed to mimic the human eye's perception of brightness and color, decompose images into illumination and reflection components but struggle with noise management and detail preservation under low light conditions. Retinexformer enhances illumination estimation through traditional self-attention mechanisms, but faces challenges with insufficient interpretability and suboptimal enhancement effects. To overcome these limitations, this paper introduces the RetinexMamba architecture. RetinexMamba not only captures the physical intuitiveness of traditional Retinex methods but also integrates the deep learning framework of Retinexformer, leveraging the computational efficiency of State Space Models (SSMs) to enhance processing speed. This architecture features innovative illumination estimators and damage restorer mechanisms that maintain image quality during enhancement. Moreover, RetinexMamba replaces the IG-MSA (Illumination-Guided Multi-Head Attention) in Retinexformer with a Fused-Attention mechanism, improving the model's interpretability. Experimental evaluations on the LOL dataset show that RetinexMamba outperforms existing deep learning approaches based on Retinex theory in both quantitative and qualitative metrics, confirming its effectiveness and superiority in enhancing low-light images.
Abstract:Conditional diffusion models can create unseen images in various settings, aiding image interpolation. Interpolation in latent spaces is well-studied, but interpolation with specific conditions like text or poses is less understood. Simple approaches, such as linear interpolation in the space of conditions, often result in images that lack consistency, smoothness, and fidelity. To that end, we introduce a novel training-free technique named Attention Interpolation via Diffusion (AID). Our key contributions include 1) proposing an inner/outer interpolated attention layer; 2) fusing the interpolated attention with self-attention to boost fidelity; and 3) applying beta distribution to selection to increase smoothness. We also present a variant, Prompt-guided Attention Interpolation via Diffusion (PAID), that considers interpolation as a condition-dependent generative process. This method enables the creation of new images with greater consistency, smoothness, and efficiency, and offers control over the exact path of interpolation. Our approach demonstrates effectiveness for conceptual and spatial interpolation. Code and demo are available at https://github.com/QY-H00/attention-interpolation-diffusion.
Abstract:Large language models (LLMs) have demonstrated remarkable proficiency in understanding and generating responses to complex queries through large-scale pre-training. However, the efficacy of these models in memorizing and reasoning among large-scale structured knowledge, especially world knowledge that explicitly covers abundant factual information remains questionable. Addressing this gap, our research investigates whether LLMs can effectively store, recall, and reason with knowledge on a large scale comparable to latest knowledge bases (KBs) such as Wikidata. Specifically, we focus on three crucial aspects to study the viability: (1) the efficiency of LLMs with different sizes in memorizing the exact knowledge in the large-scale KB; (2) the flexibility of recalling the memorized knowledge in response to natural language queries; (3) the capability to infer new knowledge through reasoning. Our findings indicate that while LLMs hold promise as large-scale KBs capable of retrieving and responding with flexibility, enhancements in their reasoning capabilities are necessary to fully realize their potential.