Abstract:This study conducts a thorough examination of malware detection using machine learning techniques, focusing on the evaluation of various classification models using the Mal-API-2019 dataset. The aim is to advance cybersecurity capabilities by identifying and mitigating threats more effectively. Both ensemble and non-ensemble machine learning methods, such as Random Forest, XGBoost, K Nearest Neighbor (KNN), and Neural Networks, are explored. Special emphasis is placed on the importance of data pre-processing techniques, particularly TF-IDF representation and Principal Component Analysis, in improving model performance. Results indicate that ensemble methods, particularly Random Forest and XGBoost, exhibit superior accuracy, precision, and recall compared to others, highlighting their effectiveness in malware detection. The paper also discusses limitations and potential future directions, emphasizing the need for continuous adaptation to address the evolving nature of malware. This research contributes to ongoing discussions in cybersecurity and provides practical insights for developing more robust malware detection systems in the digital era.
Abstract:The development of artificial intelligence has significantly transformed people's lives. However, it has also posed a significant threat to privacy and security, with numerous instances of personal information being exposed online and reports of criminal attacks and theft. Consequently, the need to achieve intelligent protection of personal information through machine learning algorithms has become a paramount concern. Artificial intelligence leverages advanced algorithms and technologies to effectively encrypt and anonymize personal data, enabling valuable data analysis and utilization while safeguarding privacy. This paper focuses on personal data privacy protection and the promotion of anonymity as its core research objectives. It achieves personal data privacy protection and detection through the use of machine learning's differential privacy protection algorithm. The paper also addresses existing challenges in machine learning related to privacy and personal data protection, offers improvement suggestions, and analyzes factors impacting datasets to enable timely personal data privacy detection and protection.
Abstract:Portfolio management issues have been extensively studied in the field of artificial intelligence in recent years, but existing deep learning-based quantitative trading methods have some areas where they could be improved. First of all, the prediction mode of stocks is singular; often, only one trading expert is trained by a model, and the trading decision is solely based on the prediction results of the model. Secondly, the data source used by the model is relatively simple, and only considers the data of the stock itself, ignoring the impact of the whole market risk on the stock. In this paper, the DQN algorithm is introduced into asset management portfolios in a novel and straightforward way, and the performance greatly exceeds the benchmark, which fully proves the effectiveness of the DRL algorithm in portfolio management. This also inspires us to consider the complexity of financial problems, and the use of algorithms should be fully combined with the problems to adapt. Finally, in this paper, the strategy is implemented by selecting the assets and actions with the largest Q value. Since different assets are trained separately as environments, there may be a phenomenon of Q value drift among different assets (different assets have different Q value distribution areas), which may easily lead to incorrect asset selection. Consider adding constraints so that the Q values of different assets share a Q value distribution to improve results.