Abstract:Terahertz (THz) communications are envisioned to be a promising technology for 6G thanks to its broad bandwidth. However, the large path loss, antenna misalignment, and atmospheric influence of THz communications severely deteriorate its reliability. To address this, hybrid automatic repeat request (HARQ) is recognized as an effective technique to ensure reliable THz communications. This paper delves into the performance analysis of HARQ with incremental redundancy (HARQ-IR)-aided THz communications in the presence/absence of blockage. More specifically, the analytical expression of the outage probability of HARQ-IR-aided THz communications is derived, with which the asymptotic outage analysis is enabled to gain meaningful insights, including diversity order, power allocation gain, modulation and coding gain, etc. Then the long term average throughput (LTAT) is expressed in terms of the outage probability based on renewal theory. Moreover, to combat the blockage effects, a multi-hop HARQ-IR-aided THz communication scheme is proposed and its performance is examined. To demonstrate the superiority of the proposed scheme, the other two HARQ-aided schemes, i.e., Type-I HARQ and HARQ with chase combining (HARQ-CC), are used for benchmarking in the simulations. In addition, a deep neural network (DNN) based outage evaluation framework with low computational complexity is devised to reap the benefits of using both asymptotic and simulation results in low and high outage regimes, respectively. This novel outage evaluation framework is finally employed for the optimal rate selection, which outperforms the asymptotic based optimization.
Abstract:Although terahertz (THz) communications can provide mobile broadband services, it usually has a large path loss and is vulnerable to antenna misalignment. This significantly degrades the reception reliability. To address this issue, the hybrid automatic repeat request (HARQ) is proposed to further enhance the reliability of THz communications. This paper provides an in-depth investigation on the outage performance of two different types of HARQ-aided THz communications, including Type-I HARQ and HARQ with chase combining (HARQ-CC). Moreover, the effects of both fading and stochastic antenna misalignment are considered in this paper. The exact outage probabilities of HARQ-aided THz communications are derived in closed-form, with which the asymptotic outage analysis is enabled to explore helpful insights. In particular, it is revealed that full time diversity can be achieved by using HARQ assisted schemes. Besides, the HARQ-CC-aided scheme performs better than the Type-I HARQ-aided one due to its high diversity combining gain. The analytical results are eventually validated via Monte-Carlo simulations.