Abstract:With the scale of antenna arrays and the bandwidth increasing, many existing narrowband channel estimation methods ignoring the effect of beam squint may face severe performance degradation in wideband millimeter-wave (mmWave) communication systems. In this letter, a wideband Newtonized orthogonal matching pursuit (wNOMP) algorithm has been proposed to perform channel estimation. The proposed method based on the minimum mean square error (MMSE) criterion is optimal for Gaussian noise. Considering real communication systems, it is common that the noise follows a non-Gaussian distribution. Accordingly we extend the wideband channel estimation method via the minimum $\ell_p$-norm criterion which enhances the robustness against the non-Gaussian noise. Simulations have been conducted to validate the superiority of the proposed method over other representative methods.
Abstract:Multi-functional and reconfigurable multiple-input multiple-output (MR-MIMO) can provide performance gains over traditional MIMO by introducing additional degrees of freedom. In this paper, we focus on the capacity maximization pattern design for MR-MIMO systems. Firstly, we introduce the matrix representation of MR-MIMO, based on which a pattern design problem is formulated. To further reveal the effect of the radiation pattern on the wireless channel, we consider pattern design for both the single-pattern case where the optimized radiation pattern is the same for all the antenna elements, and the multi-pattern case where different antenna elements can adopt different radiation patterns. For the single-pattern case, we show that the pattern design is equivalent to a redistribution of power among all scattering paths, and an eigenvalue optimization based solution is obtained. For the multi-pattern case, we propose a sequential optimization framework with manifold optimization and eigenvalue decomposition to obtain near-optimal solutions. Numerical results validate the superiority of MR-MIMO systems over traditional MIMO in terms of capacity, and also show the effectiveness of the proposed solutions.