Abstract:It is critical to deploy complicated neural network models on hardware with limited resources. This paper proposes a novel model quantization method, named the Low-Cost Proxy-Based Adaptive Mixed-Precision Model Quantization (LCPAQ), which contains three key modules. The hardware-aware module is designed by considering the hardware limitations, while an adaptive mixed-precision quantization module is developed to evaluate the quantization sensitivity by using the Hessian matrix and Pareto frontier techniques. Integer linear programming is used to fine-tune the quantization across different layers. Then the low-cost proxy neural architecture search module efficiently explores the ideal quantization hyperparameters. Experiments on the ImageNet demonstrate that the proposed LCPAQ achieves comparable or superior quantization accuracy to existing mixed-precision models. Notably, LCPAQ achieves 1/200 of the search time compared with existing methods, which provides a shortcut in practical quantization use for resource-limited devices.
Abstract:Infrared and visible image fusion (IVIF) is used to generate fusion images with comprehensive features of both images, which is beneficial for downstream vision tasks. However, current methods rarely consider the illumination condition in low-light environments, and the targets in the fused images are often not prominent. To address the above issues, we propose an Illumination-Aware Infrared and Visible Image Fusion Network, named as IAIFNet. In our framework, an illumination enhancement network first estimates the incident illumination maps of input images. Afterwards, with the help of proposed adaptive differential fusion module (ADFM) and salient target aware module (STAM), an image fusion network effectively integrates the salient features of the illumination-enhanced infrared and visible images into a fusion image of high visual quality. Extensive experimental results verify that our method outperforms five state-of-the-art methods of fusing infrared and visible images.
Abstract:Most existing learning-based infrared and visible image fusion (IVIF) methods exhibit massive redundant information in the fusion images, i.e., yielding edge-blurring effect or unrecognizable for object detectors. To alleviate these issues, we propose a semantic structure-preserving approach for IVIF, namely SSPFusion. At first, we design a Structural Feature Extractor (SFE) to extract the structural features of infrared and visible images. Then, we introduce a multi-scale Structure-Preserving Fusion (SPF) module to fuse the structural features of infrared and visible images, while maintaining the consistency of semantic structures between the fusion and source images. Owing to these two effective modules, our method is able to generate high-quality fusion images from pairs of infrared and visible images, which can boost the performance of downstream computer-vision tasks. Experimental results on three benchmarks demonstrate that our method outperforms eight state-of-the-art image fusion methods in terms of both qualitative and quantitative evaluations. The code for our method, along with additional comparison results, will be made available at: https://github.com/QiaoYang-CV/SSPFUSION.