Abstract:In this paper, a high noise immune time-domain inversion cascade network (TICaN) is proposed to reconstruct scatterers from the measured electromagnetic fields. The TICaN is comprised of a denoising block aiming at improving the signal-to-noise ratio, and an inversion block to reconstruct the electromagnetic properties from the raw time-domain measurements. The scatterers investigated in this study include complicated geometry shapes and high contrast, which cover the stratum layer, lossy medium and hyperfine structure, etc. After being well trained, the performance of the TICaN is evaluated from the perspective of accuracy, noise-immunity, computational acceleration, and generalizability. It can be proven that the proposed framework can realize high-precision inversion under high-intensity noise environments. Compared with traditional reconstruction methods, TICaN avoids the tedious iterative calculation by utilizing the parallel computing ability of GPU and thus significantly reduce the computing time. Besides, the proposed TICaN has certain generalization ability in reconstructing the unknown scatterers such as the famous Austria rings. Herein, it is confident that the proposed TICaN will serve as a new path for real-time quantitative microwave imaging for various practical scenarios.
Abstract:Federated learning is a novel framework that enables resource-constrained edge devices to jointly learn a model, which solves the problem of data protection and data islands. However, standard federated learning is vulnerable to Byzantine attacks, which will cause the global model to be manipulated by the attacker or fail to converge. On non-iid data, the current methods are not effective in defensing against Byzantine attacks. In this paper, we propose a Byzantine-robust framework for federated learning via credibility assessment on non-iid data (BRCA). Credibility assessment is designed to detect Byzantine attacks by combing adaptive anomaly detection model and data verification. Specially, an adaptive mechanism is incorporated into the anomaly detection model for the training and prediction of the model. Simultaneously, a unified update algorithm is given to guarantee that the global model has a consistent direction. On non-iid data, our experiments demonstrate that the BRCA is more robust to Byzantine attacks compared with conventional methods
Abstract:Capsule network is the most recent exciting advancement in the deep learning field and represents positional information by stacking features into vectors. The dynamic routing algorithm is used in the capsule network, however, there are some disadvantages such as the inability to stack multiple layers and a large amount of computation. In this paper, we propose an adaptive routing algorithm that can solve the problems mentioned above. First, the low-layer capsules adaptively adjust their direction and length in the routing algorithm and removing the influence of the coupling coefficient on the gradient propagation, so that the network can work when stacked in multiple layers. Then, the iterative process of routing is simplified to reduce the amount of computation and we introduce the gradient coefficient $\lambda$. Further, we tested the performance of our proposed adaptive routing algorithm on CIFAR10, Fashion-MNIST, SVHN and MNIST, while achieving better results than the dynamic routing algorithm.
Abstract:Capsule network was introduced as a new architecture of neural networks, it encoding features as capsules to overcome the lacking of equivariant in the convolutional neural networks. It uses dynamic routing algorithm to train parameters in different capsule layers, but the dynamic routing algorithm need to be improved. In this paper, we propose a novel capsule network architecture and discussed the effect of initialization method of the coupling coefficient $c_{ij}$ on the model. First, we analyze the rate of change of the initial value of $c_{ij}$ when the dynamic routing algorithm iterates. The larger the initial value of $c_{ij}$, the better effect of the model. Then, we proposed improvement that training different types of capsules by grouping capsules based different types. And this improvement can adjust the initial value of $c_{ij}$ to make it more suitable. We experimented with our improvements on some computer vision datasets and achieved better results than the original capsule network