Abstract:Event cameras hold significant promise for high-temporal-resolution (HTR) motion estimation. However, estimating event-based HTR optical flow faces two key challenges: the absence of HTR ground-truth data and the intrinsic sparsity of event data. Most existing approaches rely on the flow accumulation paradigms to indirectly supervise intermediate flows, often resulting in accumulation errors and optimization difficulties. To address these challenges, we propose a residual-based paradigm for estimating HTR optical flow with event data. Our approach separates HTR flow estimation into two stages: global linear motion estimation and HTR residual flow refinement. The residual paradigm effectively mitigates the impacts of event sparsity on optimization and is compatible with any LTR algorithm. Next, to address the challenge posed by the absence of HTR ground truth, we incorporate novel learning strategies. Specifically, we initially employ a shared refiner to estimate the residual flows, enabling both LTR supervision and HTR inference. Subsequently, we introduce regional noise to simulate the residual patterns of intermediate flows, facilitating the adaptation from LTR supervision to HTR inference. Additionally, we show that the noise-based strategy supports in-domain self-supervised training. Comprehensive experimental results demonstrate that our approach achieves state-of-the-art accuracy in both LTR and HTR metrics, highlighting its effectiveness and superiority.
Abstract:The non-maximum suppression (NMS) is widely used in frame-based tasks as an essential post-processing algorithm. However, event-based NMS either has high computational complexity or leads to frequent discontinuities. As a result, the performance of event-based corner detectors is limited. This paper proposes a general-purpose asynchronous non-maximum suppression pipeline (ANMS), and applies it to corner event detection. The proposed pipeline extract fine feature stream from the output of original detectors and adapts to the speed of motion. The ANMS runs directly on the asynchronous event stream with extremely low latency, which hardly affects the speed of original detectors. Additionally, we evaluate the DAVIS-based ground-truth labeling method to fill the gap between frame and event. Evaluation on public dataset indicates that the proposed ANMS pipeline significantly improves the performance of three classical asynchronous detectors with negligible latency. More importantly, the proposed ANMS framework is a natural extension of NMS, which is applicable to other asynchronous scoring tasks for event cameras.