Abstract:Fair cost allocation in community microgrids remains a significant challenge due to the complex interactions between multiple participants with varying load profiles, distributed energy resources, and storage systems. Traditional cost allocation methods often fail to adequately address the dynamic nature of participant contributions and benefits, leading to inequitable distribution of costs and reduced participant satisfaction. This paper presents a novel framework integrating multi-objective optimization with cooperative game theory for fair and efficient microgrid operation and cost allocation. The proposed approach combines mixed-integer linear programming for optimal resource dispatch with Shapley value analysis for equitable benefit distribution, ensuring both system efficiency and participant satisfaction. The framework was validated using real-world data across six distinct operational scenarios, demonstrating significant improvements in both technical and economic performance. Results show peak demand reductions ranging from 7.8% to 62.6%, solar utilization rates reaching 114.8% through effective storage integration, and cooperative gains of up to $1,801.01 per day. The Shapley value-based allocation achieved balanced benefit-cost distributions, with net positions ranging from -16.0% to +14.2% across different load categories, ensuring sustainable participant cooperation.
Abstract:The integration of renewable energy sources in microgrids introduces significant operational challenges due to their intermittent nature and the mismatch between generation and demand patterns. Effective demand response (DR) strategies are crucial for maintaining system stability and economic efficiency, particularly in microgrids with high renewable penetration. This paper presents a comprehensive mixed-integer linear programming (MILP) framework for optimizing DR operations in a microgrid with solar generation and battery storage systems. The framework incorporates load classification, dynamic price thresholding, and multi-period coordination for optimal DR event scheduling. Analysis across seven distinct operational scenarios demonstrates consistent peak load reduction of 10\% while achieving energy cost savings ranging from 13.1\% to 38.0\%. The highest performance was observed in scenarios with high solar generation, where the framework achieved 38.0\% energy cost reduction through optimal coordination of renewable resources and DR actions. The results validate the framework's effectiveness in managing diverse operational challenges while maintaining system stability and economic efficiency.
Abstract:Power distribution systems (PDS) serve as the backbone of our modern society, ensuring electricity reaches homes, businesses, and critical infrastructure. However, the increasing digitization and interconnectivity of these systems have exposed them to cyber threats. This study presents a comprehensive approach to evaluate and enhance the resilience of PDS under cyber attacks using the Common Vulnerability Scoring System (CVSS) and complex network parameters. By systematically assessing vulnerabilities and computing resilience once critical CVSS thresholds are reached, this work identifies key resilience metrics including the critical loads service requirements. The proposed methodology improves system resilience through strategic tie-line switching, which is validated on the modified IEEE 33-bus system. Four case studies are conducted, illustrating the performance of the proposed methodology under various cyber attack scenarios. The results demonstrate the effectiveness of the approach in quantifying and enhancing resilience, offering a valuable tool for PDS operators to mitigate risks and ensure continuous service delivery to critical loads during the exploitation of cyber threats.
Abstract:In autonomous driving, traditional Computer Vision (CV) agents often struggle in unfamiliar situations due to biases in the training data. Deep Reinforcement Learning (DRL) agents address this by learning from experience and maximizing rewards, which helps them adapt to dynamic environments. However, ensuring their generalization remains challenging, especially with static training environments. Additionally, DRL models lack transparency, making it difficult to guarantee safety in all scenarios, particularly those not seen during training. To tackle these issues, we propose a method that combines DRL with Curriculum Learning for autonomous driving. Our approach uses a Proximal Policy Optimization (PPO) agent and a Variational Autoencoder (VAE) to learn safe driving in the CARLA simulator. The agent is trained using two-fold curriculum learning, progressively increasing environment difficulty and incorporating a collision penalty in the reward function to promote safety. This method improves the agent's adaptability and reliability in complex environments, and understand the nuances of balancing multiple reward components from different feedback signals in a single scalar reward function. Keywords: Computer Vision, Deep Reinforcement Learning, Variational Autoencoder, Proximal Policy Optimization, Curriculum Learning, Autonomous Driving.
Abstract:According to Global Electricity Review 2022, electricity generation from renewable energy sources has increased by 20% worldwide primarily due to more installation of large green power plants. Monitoring the renewable energy assets in those large power plants is still challenging as the assets are highly impacted by several environmental factors, resulting in issues like less power generation, malfunctioning, and degradation of asset life. Therefore, detecting the surface defects on the renewable energy assets would facilitate the process to maintain the safety and efficiency of the green power plants. An innovative detection framework is proposed to achieve an economical renewable energy asset surface monitoring system. First capture the asset's high-resolution images on a regular basis and inspect them to detect the damages. For inspection this paper presents a unified deep learning-based image inspection model which analyzes the captured images to identify the surface or structural damages on the various renewable energy assets in large power plants. We use the Vision Transformer (ViT), the latest developed deep-learning model in computer vision, to detect the damages on solar panels and wind turbine blades and classify the type of defect to suggest the preventive measures. With the ViT model, we have achieved above 97% accuracy for both the assets, which outperforms the benchmark classification models for the input images of varied modalities taken from publicly available sources.