Abstract:Fair cost allocation in community microgrids remains a significant challenge due to the complex interactions between multiple participants with varying load profiles, distributed energy resources, and storage systems. Traditional cost allocation methods often fail to adequately address the dynamic nature of participant contributions and benefits, leading to inequitable distribution of costs and reduced participant satisfaction. This paper presents a novel framework integrating multi-objective optimization with cooperative game theory for fair and efficient microgrid operation and cost allocation. The proposed approach combines mixed-integer linear programming for optimal resource dispatch with Shapley value analysis for equitable benefit distribution, ensuring both system efficiency and participant satisfaction. The framework was validated using real-world data across six distinct operational scenarios, demonstrating significant improvements in both technical and economic performance. Results show peak demand reductions ranging from 7.8% to 62.6%, solar utilization rates reaching 114.8% through effective storage integration, and cooperative gains of up to $1,801.01 per day. The Shapley value-based allocation achieved balanced benefit-cost distributions, with net positions ranging from -16.0% to +14.2% across different load categories, ensuring sustainable participant cooperation.
Abstract:The integration of renewable energy sources in microgrids introduces significant operational challenges due to their intermittent nature and the mismatch between generation and demand patterns. Effective demand response (DR) strategies are crucial for maintaining system stability and economic efficiency, particularly in microgrids with high renewable penetration. This paper presents a comprehensive mixed-integer linear programming (MILP) framework for optimizing DR operations in a microgrid with solar generation and battery storage systems. The framework incorporates load classification, dynamic price thresholding, and multi-period coordination for optimal DR event scheduling. Analysis across seven distinct operational scenarios demonstrates consistent peak load reduction of 10\% while achieving energy cost savings ranging from 13.1\% to 38.0\%. The highest performance was observed in scenarios with high solar generation, where the framework achieved 38.0\% energy cost reduction through optimal coordination of renewable resources and DR actions. The results validate the framework's effectiveness in managing diverse operational challenges while maintaining system stability and economic efficiency.
Abstract:According to Global Electricity Review 2022, electricity generation from renewable energy sources has increased by 20% worldwide primarily due to more installation of large green power plants. Monitoring the renewable energy assets in those large power plants is still challenging as the assets are highly impacted by several environmental factors, resulting in issues like less power generation, malfunctioning, and degradation of asset life. Therefore, detecting the surface defects on the renewable energy assets would facilitate the process to maintain the safety and efficiency of the green power plants. An innovative detection framework is proposed to achieve an economical renewable energy asset surface monitoring system. First capture the asset's high-resolution images on a regular basis and inspect them to detect the damages. For inspection this paper presents a unified deep learning-based image inspection model which analyzes the captured images to identify the surface or structural damages on the various renewable energy assets in large power plants. We use the Vision Transformer (ViT), the latest developed deep-learning model in computer vision, to detect the damages on solar panels and wind turbine blades and classify the type of defect to suggest the preventive measures. With the ViT model, we have achieved above 97% accuracy for both the assets, which outperforms the benchmark classification models for the input images of varied modalities taken from publicly available sources.