Abstract:The increasing deployment of Electric Vehicle Charging Infrastructures (EVCIs) introduces cybersecurity challenges, particularly due to inherent vulnerabilities, making them susceptible to cyberattacks. The vulnerable points in EVCI are charging ports, which serve as the links between the EVs and the EVCI as they transfer the data along with the power. Data spoofing attacks targeting these ports can compromise security, reliability, and overall system performance by introducing anomalies in operational data. An efficient method for identifying the charging port current magnitude variations is presented in this research. The MATLAB/SIMULINK environment simulates an EVCI system for various data generating scenarios. A Temporal Convolution Network - Autoencoder (TCN-AE) model is used in training the multivariate time series data of EVCI and reconstructing it. The abnormalities in data are that various charging port current magnitudes are replaced with their respective data of different durations, thus enabling the replay attack scenarios. To detect anomalies, the error between the original and reconstructed data is computed, and these error values are used for detecting the anomalies. With the help of the mean vector and covariance matrices of the errors, the anomaly score is computed in the form of Mahalanobis distance. The threshold is obtained from the short sub-sequence of the errors and optimized for the whole time series data. The obtained optimal threshold is compared with the anomaly score to detect the anomaly. The model demonstrates robust performance in data reconstruction by identifying anomalies with an accuracy of 99.64%, to enhance the reliability and security in operations of EVCI.
Abstract:Power distribution systems (PDS) serve as the backbone of our modern society, ensuring electricity reaches homes, businesses, and critical infrastructure. However, the increasing digitization and interconnectivity of these systems have exposed them to cyber threats. This study presents a comprehensive approach to evaluate and enhance the resilience of PDS under cyber attacks using the Common Vulnerability Scoring System (CVSS) and complex network parameters. By systematically assessing vulnerabilities and computing resilience once critical CVSS thresholds are reached, this work identifies key resilience metrics including the critical loads service requirements. The proposed methodology improves system resilience through strategic tie-line switching, which is validated on the modified IEEE 33-bus system. Four case studies are conducted, illustrating the performance of the proposed methodology under various cyber attack scenarios. The results demonstrate the effectiveness of the approach in quantifying and enhancing resilience, offering a valuable tool for PDS operators to mitigate risks and ensure continuous service delivery to critical loads during the exploitation of cyber threats.