Abstract:Power distribution systems (PDS) serve as the backbone of our modern society, ensuring electricity reaches homes, businesses, and critical infrastructure. However, the increasing digitization and interconnectivity of these systems have exposed them to cyber threats. This study presents a comprehensive approach to evaluate and enhance the resilience of PDS under cyber attacks using the Common Vulnerability Scoring System (CVSS) and complex network parameters. By systematically assessing vulnerabilities and computing resilience once critical CVSS thresholds are reached, this work identifies key resilience metrics including the critical loads service requirements. The proposed methodology improves system resilience through strategic tie-line switching, which is validated on the modified IEEE 33-bus system. Four case studies are conducted, illustrating the performance of the proposed methodology under various cyber attack scenarios. The results demonstrate the effectiveness of the approach in quantifying and enhancing resilience, offering a valuable tool for PDS operators to mitigate risks and ensure continuous service delivery to critical loads during the exploitation of cyber threats.
Abstract:With the increase in the number of electric vehicles (EV), there is a need for the development of the EV charging infrastructure (EVCI) to facilitate fast charging, thereby mitigating the EV congestion at charging stations. The role of the public charging station depot is to charge the vehicle, prioritizing the achievement of the desired state of charge (SoC) value for the EV battery or charging till the departure of the EV, whichever occurs first. The integration of cyber and physical components within EVCI defines it as a cyber physical power system (CPPS), increasing its vulnerability to diverse cyber attacks. When an EV interfaces with the EVCI, mutual exchange of data takes place via various communication protocols like the Open Charge Point Protocol (OCPP), and IEC 61850. Unauthorized access to this data by intruders leads to cyber attacks, potentially resulting in consequences like energy theft, and revenue loss. These scenarios may cause the EVCI to incur higher charges than the actual energy consumed or the EV owners to remit payments that do not correspond adequately to the amount of energy they have consumed. This article proposes an EVCI architecture connected to the utility grid and uses the EVCI data to identify the anomalies or outliers present in the EV transmitted data, particularly focusing on SoC irregularities.