Abstract:In climate science and meteorology, local precipitation predictions are limited by the immense computational costs induced by the high spatial resolution that simulation methods require. A common workaround is statistical downscaling (aka superresolution), where a low-resolution prediction is super-resolved using statistical approaches. While traditional computer vision tasks mainly focus on human perception or mean squared error, applications in weather and climate require capturing the conditional distribution of high-resolution patterns given low-resolution patterns so that reliable ensemble averages can be taken. Our approach relies on extending recent video diffusion models to precipitation superresolution: an optical flow on the high-resolution output induces temporally coherent predictions, whereas a temporally-conditioned diffusion model generates residuals that capture the correct noise characteristics and high-frequency patterns. We test our approach on X-SHiELD, an established large-scale climate simulation dataset, and compare against two state-of-the-art baselines, focusing on CRPS, MSE, precipitation distributions, as well as an illustrative case -- the complex terrain of California. Our approach sets a new standard for data-driven precipitation downscaling.
Abstract:Denoising diffusion probabilistic models are a promising new class of generative models that are competitive with GANs on perceptual metrics. In this paper, we explore their potential for sequentially generating video. Inspired by recent advances in neural video compression, we use denoising diffusion models to stochastically generate a residual to a deterministic next-frame prediction. We compare this approach to two sequential VAE and two GAN baselines on four datasets, where we test the generated frames for perceptual quality and forecasting accuracy against ground truth frames. We find significant improvements in terms of perceptual quality on all data and improvements in terms of frame forecasting for complex high-resolution videos.