Abstract:Recent advances in text-to-image synthesis enabled through a combination of language and vision foundation models have led to a proliferation of the tools available and an increased attention to the field. When conducting text-to-image synthesis, a central goal is to ensure that the content between text and image is aligned. As such, there exist numerous evaluation metrics that aim to mimic human judgement. However, it is often unclear which metric to use for evaluating text-to-image synthesis systems as their evaluation is highly nuanced. In this work, we provide a comprehensive overview of existing text-to-image evaluation metrics. Based on our findings, we propose a new taxonomy for categorizing these metrics. Our taxonomy is grounded in the assumption that there are two main quality criteria, namely compositionality and generality, which ideally map to human preferences. Ultimately, we derive guidelines for practitioners conducting text-to-image evaluation, discuss open challenges of evaluation mechanisms, and surface limitations of current metrics.
Abstract:Large Language Models (LLMs) have revolutionized natural language processing and demonstrated impressive capabilities in various tasks. Unfortunately, they are prone to hallucinations, where the model exposes incorrect or false information in its responses, which renders diligent evaluation approaches mandatory. While LLM performance in specific knowledge fields is often evaluated based on question and answer (Q&A) datasets, such evaluations usually report only a single accuracy number for the entire field, a procedure which is problematic with respect to transparency and model improvement. A stratified evaluation could instead reveal subfields, where hallucinations are more likely to occur and thus help to better assess LLMs' risks and guide their further development. To support such stratified evaluations, we propose LLMMaps as a novel visualization technique that enables users to evaluate LLMs' performance with respect to Q&A datasets. LLMMaps provide detailed insights into LLMs' knowledge capabilities in different subfields, by transforming Q&A datasets as well as LLM responses into our internal knowledge structure. An extension for comparative visualization furthermore, allows for the detailed comparison of multiple LLMs. To assess LLMMaps we use them to conduct a comparative analysis of several state-of-the-art LLMs, such as BLOOM, GPT-2, GPT-3, ChatGPT and LLaMa-13B, as well as two qualitative user evaluations. All necessary source code and data for generating LLMMaps to be used in scientific publications and elsewhere will be available on GitHub.