Abstract:3D gaze estimation is most often tackled as learning a direct mapping between input images and the gaze vector or its spherical coordinates. Recently, it has been shown that pose estimation of the face, body and hands benefits from revising the learning target from few pose parameters to dense 3D coordinates. In this work, we leverage this observation and propose to tackle 3D gaze estimation as regression of 3D eye meshes. We overcome the absence of compatible ground truth by fitting a rigid 3D eyeball template on existing gaze datasets and propose to improve generalization by making use of widely available in-the-wild face images. To this end, we propose an automatic pipeline to retrieve robust gaze pseudo-labels from arbitrary face images and design a multi-view supervision framework to balance their effect during training. In our experiments, our method achieves improvement of 30% compared to state-of-the-art in cross-dataset gaze estimation, when no ground truth data are available for training, and 7% when they are. We make our project publicly available at https://github.com/Vagver/dense3Deyes.