Abstract:Despite the success of deep learning on supervised point cloud semantic segmentation, obtaining large-scale point-by-point manual annotations is still a significant challenge. To reduce the huge annotation burden, we propose a Region-based and Diversity-aware Active Learning (ReDAL), a general framework for many deep learning approaches, aiming to automatically select only informative and diverse sub-scene regions for label acquisition. Observing that only a small portion of annotated regions are sufficient for 3D scene understanding with deep learning, we use softmax entropy, color discontinuity, and structural complexity to measure the information of sub-scene regions. A diversity-aware selection algorithm is also developed to avoid redundant annotations resulting from selecting informative but similar regions in a querying batch. Extensive experiments show that our method highly outperforms previous active learning strategies, and we achieve the performance of 90% fully supervised learning, while less than 15% and 5% annotations are required on S3DIS and SemanticKITTI datasets, respectively.
Abstract:In recent years, few-shot learning problems have received a lot of attention. While methods in most previous works were trained and tested on datasets in one single domain, cross-domain few-shot learning is a brand-new branch of few-shot learning problems, where models handle datasets in different domains between training and testing phases. In this paper, to solve the problem that the model is pre-trained (meta-trained) on a single dataset while fine-tuned on datasets in four different domains, including common objects, satellite images, and medical images, we propose a novel large margin fine-tuning method (LMM-PQS), which generates pseudo query images from support images and fine-tunes the feature extraction modules with a large margin mechanism inspired by methods in face recognition. According to the experiment results, LMM-PQS surpasses the baseline models by a significant margin and demonstrates that our approach is robust and can easily adapt pre-trained models to new domains with few data.