Abstract:Many machine learning techniques rely on minimizing the covariance between output feature dimensions to extract minimally redundant representations from data. However, these methods do not eliminate all dependencies/redundancies, as linearly uncorrelated variables can still exhibit nonlinear relationships. This work provides a differentiable and scalable algorithm for dependence minimization that goes beyond linear pairwise decorrelation. Our method employs an adversarial game where small networks identify dependencies among feature dimensions, while the encoder exploits this information to reduce dependencies. We provide empirical evidence of the algorithm's convergence and demonstrate its utility in three applications: extending PCA to nonlinear decorrelation, improving the generalization of image classification methods, and preventing dimensional collapse in self-supervised representation learning.
Abstract:The DEtection TRansformer (DETR) opened new possibilities for object detection by modeling it as a translation task: converting image features into object-level representations. Previous works typically add expensive modules to DETR to perform Multi-Object Tracking (MOT), resulting in more complicated architectures. We instead show how DETR can be turned into a MOT model by employing an instance-level contrastive loss, a revised sampling strategy and a lightweight assignment method. Our training scheme learns object appearances while preserving detection capabilities and with little overhead. Its performance surpasses the previous state-of-the-art by +2.6 mMOTA on the challenging BDD100K dataset and is comparable to existing transformer-based methods on the MOT17 dataset.
Abstract:During training, supervised object detection tries to correctly match the predicted bounding boxes and associated classification scores to the ground truth. This is essential to determine which predictions are to be pushed towards which solutions, or to be discarded. Popular matching strategies include matching to the closest ground truth box (mostly used in combination with anchors), or matching via the Hungarian algorithm (mostly used in anchor-free methods). Each of these strategies comes with its own properties, underlying losses, and heuristics. We show how Unbalanced Optimal Transport unifies these different approaches and opens a whole continuum of methods in between. This allows for a finer selection of the desired properties. Experimentally, we show that training an object detection model with Unbalanced Optimal Transport is able to reach the state-of-the-art both in terms of Average Precision and Average Recall as well as to provide a faster initial convergence. The approach is well suited for GPU implementation, which proves to be an advantage for large-scale models.