Abstract:Effective and flexible allocation of visual attention is key for pedestrians who have to navigate to a desired goal under different conditions of urgency and safety preferences. While automatic modelling of pedestrian attention holds great promise to improve simulations of pedestrian behavior, current saliency prediction approaches mostly focus on generic free-viewing scenarios and do not reflect the specific challenges present in pedestrian attention prediction. In this paper, we present Context-SalNET, a novel encoder-decoder architecture that explicitly addresses three key challenges of visual attention prediction in pedestrians: First, Context-SalNET explicitly models the context factors urgency and safety preference in the latent space of the encoder-decoder model. Second, we propose the exponentially weighted mean squared error loss (ew-MSE) that is able to better cope with the fact that only a small part of the ground truth saliency maps consist of non-zero entries. Third, we explicitly model epistemic uncertainty to account for the fact that training data for pedestrian attention prediction is limited. To evaluate Context-SalNET, we recorded the first dataset of pedestrian visual attention in VR that includes explicit variation of the context factors urgency and safety preference. Context-SalNET achieves clear improvements over state-of-the-art saliency prediction approaches as well as over ablations. Our novel dataset will be made fully available and can serve as a valuable resource for further research on pedestrian attention prediction.
Abstract:A lack of corpora has so far limited advances in integrating human gaze data as a supervisory signal in neural attention mechanisms for natural language processing(NLP). We propose a novel hybrid text saliency model(TSM) that, for the first time, combines a cognitive model of reading with explicit human gaze supervision in a single machine learning framework. On four different corpora we demonstrate that our hybrid TSM duration predictions are highly correlated with human gaze ground truth. We further propose a novel joint modeling approach to integrate TSM predictions into the attention layer of a network designed for a specific upstream NLP task without the need for any task-specific human gaze data. We demonstrate that our joint model outperforms the state of the art in paraphrase generation on the Quora Question Pairs corpus by more than 10% in BLEU-4 and achieves state of the art performance for sentence compression on the challenging Google Sentence Compression corpus. As such, our work introduces a practical approach for bridging between data-driven and cognitive models and demonstrates a new way to integrate human gaze-guided neural attention into NLP tasks.