Abstract:Content generation and manipulation approaches based on deep learning methods have seen significant advancements, leading to an increased need for techniques to detect whether an image has been generated or edited. Another area of research focuses on the insertion and harmonization of objects within images. In this study, we explore the potential of using harmonization data in conjunction with a segmentation model to enhance the detection of edited image regions. These edits can be either manually crafted or generated using deep learning methods. Our findings demonstrate that this approach can effectively identify such edits. Existing forensic models often overlook the detection of harmonized objects in relation to the background, but our proposed Disharmony Network addresses this gap. By utilizing an aggregated dataset of harmonization techniques, our model outperforms existing forensic networks in identifying harmonized objects integrated into their backgrounds, and shows potential for detecting various forms of edits, including virtual try-on tasks.
Abstract:It has been shown that many generative models inherit and amplify societal biases. To date, there is no uniform/systematic agreed standard to control/adjust for these biases. This study examines the presence and manipulation of societal biases in leading text-to-image models: Stable Diffusion, DALL-E 3, and Adobe Firefly. Through a comprehensive analysis combining base prompts with modifiers and their sequencing, we uncover the nuanced ways these AI technologies encode biases across gender, race, geography, and region/culture. Our findings reveal the challenges and potential of prompt engineering in controlling biases, highlighting the critical need for ethical AI development promoting diversity and inclusivity. This work advances AI ethics by not only revealing the nuanced dynamics of bias in text-to-image generation models but also by offering a novel framework for future research in controlling bias. Our contributions-panning comparative analyses, the strategic use of prompt modifiers, the exploration of prompt sequencing effects, and the introduction of a bias sensitivity taxonomy-lay the groundwork for the development of common metrics and standard analyses for evaluating whether and how future AI models exhibit and respond to requests to adjust for inherent biases.