Abstract:Users' interaction or preference data used in recommender systems carry the risk of unintentionally revealing users' private attributes (e.g., gender or race). This risk becomes particularly concerning when the training data contains user preferences that can be used to infer these attributes, especially if they align with common stereotypes. This major privacy issue allows malicious attackers or other third parties to infer users' protected attributes. Previous efforts to address this issue have added or removed parts of users' preferences prior to or during model training to improve privacy, which often leads to decreases in recommendation accuracy. In this work, we introduce SBO, a novel probabilistic obfuscation method for user preference data designed to improve the accuracy--privacy trade-off for such recommendation scenarios. We apply SBO to three state-of-the-art recommendation models (i.e., BPR, MultVAE, and LightGCN) and two popular datasets (i.e., MovieLens-1M and LFM-2B). Our experiments reveal that SBO outperforms comparable approaches with respect to the accuracy--privacy trade-off. Specifically, we can reduce the leakage of users' protected attributes while maintaining on-par recommendation accuracy.
Abstract:Music recommender systems have become an integral part of music streaming services such as Spotify and Last.fm to assist users navigating the extensive music collections offered by them. However, while music listeners interested in mainstream music are traditionally served well by music recommender systems, users interested in music beyond the mainstream (i.e., non-popular music) rarely receive relevant recommendations. In this paper, we study the characteristics of beyond-mainstream music and music listeners and analyze to what extent these characteristics impact the quality of music recommendations provided. Therefore, we create a novel dataset consisting of Last.fm listening histories of several thousand beyond-mainstream music listeners, which we enrich with additional metadata describing music tracks and music listeners. Our analysis of this dataset shows four subgroups within the group of beyond-mainstream music listeners that differ not only with respect to their preferred music but also with their demographic characteristics. Furthermore, we evaluate the quality of music recommendations that these subgroups are provided with four different recommendation algorithms where we find significant differences between the groups. Specifically, our results show a positive correlation between a subgroup's openness towards music listened to by members of other subgroups and recommendation accuracy. We believe that our findings provide valuable insights for developing improved user models and recommendation approaches to better serve beyond-mainstream music listeners.